

Origin of metal-insulator transition and the experimental determination

	Resistivity	Static susceptibility by SQUID	Spin susceptibility by ESR	X-ray diffraction
Charge density wave (Peierls transition)	<i>ρ</i> Insulator	χ nonmagnetic insulator	$\chi_{\rm s}$ the same ΔH continuous	$2k_{\rm F}$ periodicity > $T_{\rm MI}$ diffuse
	$T_{\rm MI}$ T		$\chi \propto \frac{1}{k_{\rm B}T \left(3 + e^{E_{\rm g}/k_{\rm B}T}\right)}$	<t<sub>MI spot</t<sub>
Spin density wave	P Insulator	antiferromagnetic χ insulator	ΔH diverge	Nothing
	$T_{\rm MI} \rightarrow T$	$T_{\text{MI}} \longrightarrow T \qquad \qquad \chi_{II} / T_{\text{MI}} \longrightarrow T$		Intensity drops to 0
Mott insulator • Charge order	ρ Insulator	χ paramagnetic insulator	$\chi_{\rm s}$ the same ΔH continuous	Mott : nothing Charge order :
		$T_{\rm MI} \rightarrow T$	SDW or spin-Peierls at lower <i>T</i>	extraperiodicity
Spin- Peierls transition	ρ Insulator at all T	χ nonmagnetic	$\chi_{\rm s}$ the same ΔH continuous	$2k_{\rm F}$ periodiciry
		T	$\chi \propto \frac{1}{k_{\rm B}T \left(3 + e^{E_{\rm g}/k_{\rm B}T}\right)}$	

1D band. HOMO and LUMO have close energy levels, so that the dimerization (particularly in Pd complexes) leads to crossing HOMO and LUMO bands.

