

電荷移動錯体

赤松, 井口, 松永, Nature, 173, 168 (1954).

電荷移動錯体 電子供与体 elect 酸化されてDP-	charge-1	transf	er com	plex	
電子供与体 elect 酸化されてDo-	ron donor				
酸化されてD0-					
HOMOGLA	→D+になりやす しが高い物質	い物質			
電子受容体 elect	ron accepte	or			
還元されてAº LUMOのレベ/	→A-になりやす Lが低い物質	い物質			
Lowest Unccupied Mo	lecular Orbital			LUMO	
LUMO	云導 ンド	/₀ ‡ <u>↓</u> -⟨	hv		Ā
	T	номо			
НОМО	回電子 バンド	Do	D ^{δ+} A ^δ -	A0	
Highest Occupied Mo	lecular Orbital		電荷移動	錯体	

TTF-TCNQ 結品

TTF

C N

TCNQ

è属·半導体転移

200

300

温度

54 K

100 T (K)

10⁻⁴

TCNQ

0

金属	-絶縁体転移の	原因と実験的区別
	電気抵抗率	静磁化率 スピン磁化率 X線散乱 (SQUID) (ESR) X線散乱
電荷密度 波(CDW) (Peierls 転移)	ρ ・ 絶縁体 金属 T _{MI} : ・ T	χ ・非磁性絶縁体 線幅は $T_{\rm MI}$ で連続 ア $\chi \propto \frac{1}{k_{\rm B}T(3+e^{E_{\rm g}/k_{\rm B}T})}$ 2 $k_{\rm F}$ の長周期 $T_{\rm MI}$ 散漫散乱 $< T_{\rm MI}$ スポット
スピン 密度波 (SDW)	ρ ← 絶縁体 金属 T _{MI} : → T	反強磁性絶縁体 $\chi \uparrow \chi_{\perp} \chi$
モット 絶縁体・ 電荷整列	ρ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	χ 常磁性絶縁体 χ_s は同左 線幅は T_{MI} で連続 電荷整列: 長周期 通常さらに低温でSDWか spin-Peierlsのどちらかが起こる。
Spin- Peierls 転移	 ←	χ 非磁性絶縁体 χ_s は同左 線幅は T_{MI} で連続 CDW同様 singlet-triplet model

(EDT-TTF)[Ni(dmi+)₂](1.3 K)以外は高圧下での超伝導体。 バンド構造は一次元的。HOMOとLUMOが左右の配位子の位相を逆にした ようなものであるため、エネルギーレベルが近く、二量化の大きいPd錯体 ではフェルミ面がHOMOバンドに来る。

