Coi	lomb repulsion in molecular orbital theory
	Configuration interaction
Ele	ctron correlation in solids
	Hubbard model
	Stoner model
	Mott insulator
	Strict solution of Hubbard model
Or	igin of magnetic interaction J from the Hubbard nmodel
Ch	arge order:non half-filled case
На	rtree-Fock approximation of the Hubbard model
Su	perexchange interaction
Ch	arge density waves
Kc	ndo effect
Lo	carization in a disordered system

Electron Correlation (電子相関) Molecular orbital theory considering inter-electron Coulomb repulsion $H = \sum_{i} \left[-\frac{\hbar^2}{2m} \nabla_i^2 - \frac{1}{4\pi\varepsilon_0} \sum_{n} \frac{Z_n e^2}{r_{ni}} \right] + \frac{1}{4\pi\varepsilon_0} \sum_{i=i} \frac{e^2}{r_{ii}}$ Sum for electrons Attraction from Inter-electron nuclei Coulomb repulsion For an N-electron system, in general Slater determinant $\varphi_1(1) - \varphi_1(2)$ $\varphi_1(N)$ $\Psi(1,2,) = \frac{1}{\sqrt{N!}} \begin{vmatrix} r_{1}r_{1}r_{2} & r_{1}r_{2} \\ \varphi_{2}(1) & \varphi_{2}(2) & \varphi_{2}(N) \\ \varphi_{N}(1) & \varphi_{N}(2) & \varphi_{N}(N) \end{vmatrix}$ $=\frac{1}{\sqrt{N!}}\sum_{n}P^{(-1)}\varphi_{1}(1)\varphi_{2}(2)\cdots\varphi_{N}(N)$ All permutations for electron numbers One permutation such as $1 \Leftrightarrow 2$ generates a minus sign. Exchange 1 \Leftrightarrow 2 electrons \rightarrow Columns 1,2 exchange \rightarrow (Antisymmetric) The same ϕ_1 and $\phi_2 \rightarrow$ The same 1, 2 lines \rightarrow |Determinant|=0 \rightarrow 2 electrons (Fermi粒子) cannot take the same state (Pauli's exclusion principle)

Molecular Correlation in Molecular Orbital A hydrogen atom has 2 electrons in the bonding orbitals, so that the whole wave function is	$\alpha - \beta \longrightarrow \phi = \chi_{A} - \chi_{B}$ $\alpha + \beta \longrightarrow \phi = \chi_{A} + \chi_{B}$
$\Psi = (\chi_{A}(1) + \chi_{B}(1))(\chi_{A}(2) + \chi_{B}(2))(\alpha(1))$ Spin part in the Slater determinant is antisym.	$\begin{array}{c} \beta(2) - \alpha(2) \beta(1)) \\ \rightarrow \text{ singlet} \rightarrow \text{ omitted} \end{array}$
$\rightarrow \chi_{A}(1) \chi_{A}(2) + \chi_{A}(1) \chi_{B}(2) + \chi_{B}(1) \chi_{A}(1) \chi_{B}(2)$	(2) + $\chi_{B}(1) \chi_{B}(2)$
2 electrons on Covalent bond	2 electrons on
hydrogen A	hydrogen B
H ⁻ H ⁺ ionic	H ⁻ H ⁺ ionic
Ionic contribution in MO is 50%; this is obvious This come from the averaged electron density, ar (電子相関) is not considered.	ly too large! nd electron correlation
cf. Valence Bond Theory (Heitler Lindon法)	
Use $\Psi = \chi_{A}(1) \chi_{B}(2) + \chi_{B}(1) \chi_{A}(2)$ ins	stead of the above Ψ

Applying	weak magnetic field h	Magnetic sus	ceptibility
$E = \frac{W - U}{4}$	$\frac{U}{2}m^2 + \frac{U}{4}n^2 - mh$	χ m* D(E)	Mott
→	$\frac{1}{2} = \frac{\partial h}{\partial h} = \frac{W - U}{2}$	$D(L_{\rm F})$	
($\chi \partial m$ 2	1	WU
or because	the energy of the spin sytem	is $\frac{1}{2\chi}m^2$	
Susceptibi (the same	lity diverges to ∞ at $U \rightarrow W$ in m^* and DOS $D(E_F)$)	$\chi = \frac{2}{W}$	$\frac{2}{-U} = \frac{\chi_0}{1 - UD_0}$
	I.	$D(E)^{\uparrow}$	herence peak
The same as a f	erromagnet approaching to T from $T > T_c$	c	
Here T=0, and t	he horizontal axis is U/W		
		E	Ē
	RPA rusult:		

2 site 2 elec Singlet s	tron l	Hubbar on	d moo	lel	₄ C ₂ = 6 states Triplet solution
	-E	t	0	t	-
2	t	U-E	t	0	
3 ↓↑	0	t	-E	t =	E = 0,0
④ ♠	t	0	t	U-E	
By or ① ch	1e ele anges	ctron j	ump	4 has l	by <i>U</i> higher energy
The solut	ion is				
-E =2i			-1	E 0	
2t U –	E = 0		0	U-E	
$U + \sqrt{U^2}$	$+16t^{2}$		E	E = 0, U	

extended Hubbard model

Adjacent-site electron leads to by V (off-site Coulomb repulsion) higher energy ____

At 1/4-filled, alternate arrangement is stable.

Vloss

Charge order insulator

2-fold periodicity

 $(= 4k_{\rm F} \,{\rm CDW}$ in a one-dimensional system) (cf. no new periodicity in a Mott insulator)

