電子相関(electron correlation)
分子軌道法で	での電子間クーロン斥力の扱い
配置	間相互作用
→ 固体におけ	る電子相関
Hub	bard model
Stor	ner model
Mot	t絶縁体
Hub	bard modelの厳密解
磁気相互作	用 <i>J</i> の起源←Hubbard nmodelからの導出
電荷整列:	half-filled以外の場合
Hubbard	modelのHartree-Fock近似
超交換相互	作用
電荷密度波近藤効果	
乱れた系に	おける局在

この分クーロン反発が少ないので、この分を J_{kl} から補正。 1つの分子軌道に2電子の場合 $E=2H_1+J_{11}$ i番目の軌道から1個の電子を取り去った場合。 $E=E_0-[H_i+\sum_k (J_{ik}-K_{ik})]$	↓ ↓ ↓
1つの分子軌道に2電子の場合 $E=2H_1+J_1$ i番目の軌道から1個の電子を取り去った場合。 $E=E_0-[H_i+\sum_k (J_{ik}-K_{ik})]$	++
i番目の軌道から1個の電子を取り去った場合。 $E = E_0 - [H_i + \sum_{k} (J_{ik} - K_{ik})]$	4 1
$E = E_0 - [H_i + \sum_{k} (J_{ik} - K_{ik})]$	
	-++-
目の電子のエネルギーと思えばよい。(Koopmansの定理)	E ₀
白	
全エネルギーは $E_0=\sum arepsilon_i$ と、一電子エネルギーであるかの。	ように
₩ え る。′j_	-
番目の分子軌道に余分の電子を加えた状態は	<u> </u>
$F - F + [H + \sum (I - K)] - F + c$	V ()

分子軌道法における電子相関	Η₂ α- ,	β ψ =	$\chi_{\rm A} - \chi_{\rm B}$
水素分子では結合軌道に2電子カ いる(右図)ので、分子全体では	יא _ז כ α+,	$\beta + \psi =$	$\chi_{\rm A} + \chi_{\rm B}$
Ψ=(χ _A (1)+ χ _B (1))(χ _A (2)+ Slater行列式にするとスピン部	χ _B (2))(α(1)β(2)− 分のみ反対称→一	α(2)β(1)) 重項→この部	分は無視
$\rightarrow \chi_{A}(1) \chi_{A}(2) + \chi_{A}(1) \chi_{B}(2)$) + $\chi_{\rm B}(1) \chi_{\rm A}(2)$ +	$\chi_{\rm B}(1) \chi_{\rm B}(2)$	
電子が2つとも 井存 AのH上にいる H ⁻ H ⁺ イオン性	i結合性 間 B	電子が2つとも のH上にいる +H-イオン性	
	+ 1		
分子軌道法ではイオン性の寄与が これは他の電子の影響を平均場近	50%もあり、明ら 似でならしてしま	かに過大であったため、電	る。 子が
ユレル避けのつ効果(電子相関elec 原子価結合法Valence Bond Th	eron correlation cory (Heitler Lind)かへっている lon法)	いたの。
Ψの代わりに Ψ = x _A (1)	$\mathbf{x}_{B}(2) + \mathbf{x}_{B}(1) \mathbf{x}_{A}$	(2) を使う。	

磁気相互作用」の起源←	ハバードモテルからの導出	
2サイト 2電子 のハバ- シングレットの解	ードモデル 4C2=6 状態 トリスレットC	の解
-E t		*IJT
$\textcircled{2} \bigstar t U-E$	t = 0	
	-E t $= 0,0$ $E = 0,0$	-
(4) ↓ t 0	t U-E	
電子を 1 個飛ばすと ①から④に行ける	5 ④は <i>U</i> だけ エネルギーが高い	
これを解くと		
$\begin{vmatrix} -E & 2t \end{vmatrix} = 0$	-E = 0	
$\begin{vmatrix} 2t & U-E \end{vmatrix}$	0 U - E	
$E = \frac{U \pm \sqrt{U^2 + 16t^2}}{2}$	$E = 0, U$ ただし $E = 0$ の解は $\Psi = \frac{1-2}{\sqrt{2}}$ のように	
	反対称なので三重項に入っていく。	

