

For tet	anedra	a · ups	ide dov	vn. alw	ays hig	gn spin			
<i>t</i> ₂ —		4	#	∔ ‡‡		∔ ‡‡	ŧţ ‡1	ţţţţ	
e ∔	##	4	4	##	∔ ‡‡	ŧŧŧŧ	ŧţŧţ	ŧŧŧ	
$d^{1} = 1/2$	d ² 1	d ³ 3/2	d4 2	d ⁵ 5/2	d ⁶ 2	d ⁷ 3/2	d ⁸ 1	d ⁹ 1/2	
Order of I ⁻ < Br ⁻ < < NC	$\Delta : s_{\rm S}$ $\Delta : c_{\rm F}$ $\Delta : s_{\rm S}$ $\Delta : s_{\rm S}$	- < OH - < H ₃ < en -	opic serie < H ₂ O < phen <	cN-	S	trong			W
For example Exercis	nple, Fo e: Estim	ate spins	s of the f	ollowing	^o minus . g ions an	d compo	o d ^o , so s ounds.	5=5/2	
	~ · · · (Mn	10 ₄ -	J	CuC	1 ₄ 2-		
Mn	J ₄ ²⁻			- T ()		- L	J	

For oc	tahedr	al			high sp	oin			
<i>e</i> _g —			÷	<u>+</u> 1	++	++		∔ ‡‡	<u>tuti</u>
	∔ Î=	ţţŢ	∔ ‡‡	ŧ ‡Ì	ŧ ŧ‡	ŧţţţ Î	ţţţ ÎI	ţţţ <u>ţ</u>	ţţţţÎ
d1	d ²	d ³	d4	d ⁵	d ⁶	d7	d ⁸	d9	d ¹⁰
S = 1/2	1	3/2	2	5/2	2	3/2	1	1/2	0
Ti ³⁺	Ti ²⁺	Cr ³⁺	Cr 2+	Fe ³⁺	Fe ²⁺	Co ²⁺	Ni ²⁺	Cu ²⁺	Zn ²⁺
V ⁴⁺	V ³⁺	Mn ⁴⁺	Mn ³⁺	Mn ²⁺	Co ³⁺	Ni ³⁺			Cu+
			Ti ⁰	\mathbf{V}^{0}	Cr ⁰	Mn ⁰	Fe ⁰	Co ⁰	Ni ⁰
			4	5	6	7	8	9	10
For $d = 4$ Transition f	∼7, wł rom higl	ien cryst n spin	al field >	> Hund	rule, lo	ow spin ▲	state acl [Fe	hieved e ¹¹ (phen) ₂ (NCS) ₂]
o low spin Spin crosso	by chang ver	ging T		ŧţţţ			χ Τ	1	76 K
Low spin	d ⁶ is		d4	d ⁵	d ⁶	d ⁷		spin	high spir
nomnagne	uu	C-	- 1	1/2		Δ	1/2		-

Dielectric	s in a capacitor			
		Capacito	ors:	
(a)	(b)	Q = CV	q = εE	E=VId
$+Q$ $\uparrow E_0$	$E_0 \uparrow = -4\pi$	P C = εS/d	Q = qS	
		ε ο = 0	.088 pF/ci	n
Insert diel	ectrics with keep	oing <i>q</i>		
Actual field	Original electric field			
E =	Ε₀ - 4 π Ρ	$\varepsilon_0 \boldsymbol{E} = \boldsymbol{D} - \boldsymbol{P}$		q′= q −σ
→ D =	: E+4 π P cgs	$\boldsymbol{D} = \varepsilon_0 \boldsymbol{E} + \boldsymbol{P}$	MKS	
D = ε	E dielectric const.	$D = \varepsilon_0 \varepsilon_r E \rightarrow$		
<i>E</i> decr	eases 1/ɛ of <i>D</i> e.g	g. Si (ε = 11.9) -	→1/11.9 v	vater \rightarrow 1/80
Insert	dielectrics with k	eeping $V \rightarrow C$	is × ε	
In particu	lar, σ = q perfec	t polarization -	→ <i>E</i> =0 an	α ε = ∞
→ Met	tal(<i>E</i> = 0 in a me	tal)		
	$>0 \rightarrow c>1$			

Applicat	on of H to mater	lais gives rise to		$M \mid B$
magnetiz	ation M . B in the	e material is $B =$	$= \mu_0(H + M)$	
v < 0	$\chi = M / H$ Ma	Diamagnetici	mily n: Materials with	out spins
$\chi < 0$ $\chi > 0$	$\boldsymbol{B} < \boldsymbol{\mu}_{0}\boldsymbol{H}$ $\boldsymbol{B} > \boldsymbol{\mu}_{0}\boldsymbol{H}$	Paramagnetis	n: Materials with	unpaired spins
Diamagr	etism of Aton	IS		
Materia	ls with unpaired	spins \rightarrow Ato	mic orbital motio	ŋ
I = 0	$-Ze(-\frac{1}{2}eB)\frac{1}{2}$			
	$2\pi m^2$		回転電流1	
C	narge cyclotror	frequency $\omega_{\rm c}$		
(Mag	Moment) = $I \times (0$	Circular Area)		·
	$\frac{Ze^2B}{Ze^2+v^2}$	$=-\frac{Ze^2B}{\langle r^2 \rangle}$		
μ-	4 <i>m</i>	6 <i>m</i>		
1 1	to	$\frac{2}{3} < r^2 >$		
leads				

Curie Paramagnetism	$H \mid 1/2 \rightarrow \mu$
Magnetic moment from unpaired electons	2 μ Η
$\mu = \gamma h \mathbf{S} = -g \mu_{\rm B} \mathbf{S}$	$-1/2$ μ
Zeemann splitting due to the magnetic field <i>H</i>	
$E = -g \mu_{\rm B} HS = -\mu H$	
Split to two for $S=1/2$. In thermal equilibrium	n:
$N_{\uparrow} e^{\mu H/k_{\rm B}T} N_{\downarrow}$	$e^{-\mu H/k_{\mathrm{B}}T}$
$\overline{N} = \overline{e^{\mu H/k_{\rm B}T} + e^{-\mu H/k_{\rm B}T}} \qquad \overline{N} = \overline{e^{\mu H}}$	$r'/k_{\rm B}T + e^{-\mu H/k_{\rm B}T}$
lead to μH μH	I uH
$M = \mu_{\rm B}(N_{\uparrow} - N_{\downarrow}) = N\mu tanh \frac{1}{k_{\rm B}T} \approx N\mu(\frac{1}{k_{\rm B}T})$	$(\overline{r}) \leftarrow \frac{i}{k_{\rm s}T} << 1$ so
$M N\mu^2 C$ Curie constant	
$\chi = \frac{1}{H} = \frac{1}{k_{\rm B}T} = \frac{1}{T}$ Eucle constant Except for S=1/2	$T = \frac{NS(S+1)g^2\mu_{\rm B}^2}{2}$
\mathcal{X} is inversely propertional to T	3k _B
χ is inversely proportional to T .	only comes from S
Random spins	X \
Aligned under magnetic field	
Anglieu under magnetie field.	

