
Electron Transport 

(1) Phase velocity and group velocity 

Convolution of two slightly different waves with ω±Δω and k±Δk is,
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General energy band is 
approximated by free electron
and the coefficient gives m*

Acceleration of the wave packet
under a certain force (electric field)

m* small → light electron→ vg　　　　  　　　→ mobile

m* large→ heavy electron →vg　　　　 　　　 → inmobile

vg

←bandwidth

←bandwidth

E(k)

/a/a

m*

E(k)    2 coska

 2E
k2 

m*  
h2

2a2 coska

m*<0　for upper half of the band: hole
The wave packet is accelerated in the opposite 
direction as like a positively charged particle. 
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Hole：m*<0, E<0, a particle with positive charge



(3) Electric conduction
Equation of motion under electric field ε (classical mechanics!)
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加速度 摩擦力 電場による力
1) Remove the force, so ε=0 leads to
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 v  τ：relaxation time

Electron is scattered to v=0 within time τ. 
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Resistivity 　 Only τ is temperature dependent 
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In reality

Phonon scattering Impurity scattering (independent of temperature)
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Lattice specific heat：const. at high T (Dulong-Petit's rule)
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Constant resistivity from impurity scattering (残留抵抗 residual resistance)
Resistivity of metals decreases at low temperatures, 

and becomes constant at very low temperatures.

(4) Hall effect
x//: apply current jx,
z//: apply magnetic field B
y//: measure the generated voltage Ey.
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Electrons in electric and magnetic fields feel  
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force of electric field
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RH：Hall coefficient  cf. hole

Hall coefficient　 RH >0　hole
 RH <0　electron

RH  → carrier concentration n gives
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(5) Thermal conductivity (of metals is due to free electrons)　
Thermal conductivity carried by free electrons
in analogy with thermal conductivity carried by phonons (lattice vibration)
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Thermal conductivity of various materials
(6) Cyclotron oscillation 　Electron moves circularly under magnetic field.

Equation of motion under electric and magnetic fields B//z
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For magnetic field　B//z　
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Exterior product of v and B is ⊥v. Its inner product is 0.

Electron moves on a constant energy surface (= Fermi surface).
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Cross section of H⊥surface and the Fermi surface

(7) Quantum Oscillation
Circular motion is quantized just like a hydrogen atom.
　(circle)＝(wavelength) × (integer)　　Bohr's quantization condition
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n=1　circle＝λ 　E=hωc

n=2　circle＝2λ 　E=2hωc

n=3　circle＝3λ 　E=3hωc

B
In three dimension
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Fermi surface

Orbit is restricted to these circles (also circle in the real space).

Landau tube：cylindrical slices of the Fermi surface 
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1D energy band for z has
density of dates, D(E)∝E-1/2

with a peak at E =0.
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Changing B

Occupied upper most Laudau level
＝ Most outer orbit
＝ Equator of the Fermi surface 
＝ (In general) extremal cross section
When this crosses EF by changing B, D(EF) makes peaks.
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Many properties of metals oscillate when B is scanned at low T.
The periodicity is

Magnetic field
Electrical Resistivity Shubnikov-de Haas oscillation　
Magnetic Susceptibility　　de Haas-van Alphen oscillation
Specific Heat

B

This area

D. Shoenberg, Magnetic Oscillations in Metals, Cambridge (1984).
J. Wosnitza, Fermi Surfaces of Low-Dimensional Organic Metals and
Superconductors, Springer (1996).
M. V. Kartsovnik, Chem. Rev. 104, 5737 (2004).  

Fermiology
to investigate Fermi surface

Shubnikov- de Haas Oscillation inβ-(BEDT-TTF)2I3

Oscillation of electrons rotating around 
the Fermi surface is observed at low T (< 1 K)
and under strong magnetic field (> 10 T).
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of the 1st Brillouin zone.
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Kang, et al. Phys. Rev. Lett. 
62, 2559 (1989).



Shubnikov- de Haas Oscillation in κ-(BEDT-TTF)2Cu(NCS)2
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4 molecules in a unit cell → 2 electrons in a cell →  SFS/SBZ=100%

SFS/SBZ
=18%

Oshima et al. Phys. Rev. B 38, 938 (1988).

Quantum Hall Effect 
Amplitude of Shubnikov-de Haas oscillation grows to reach R→0.
At large B, near the quantum limit （n → 1 ）.

GaAs MOS FET 0.35 K

抵抗＝0

Hall effect ＝ const.
　抵抗標準

Angular Dependent Magnetoresistance Oscillation (ADMRO)
Measure resistance by 
titling the magnetic field.
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Kajita oscillation (Yamaji oscillation)

Kajita, Solid State Commun. 70, 1189 (1989).
Kartsovnik, JETP Lett. 48, 541 (1988).
Yamaji, J. Phys. Soc. Jpn. 58, 1520 (1989).

Interval of peaks positions of kF
θ

θ

tan 
n 

c
kF

ckFtan  n

β-(BEDT-TTF)2I3

Angular Dependent Magnetoresistance Oscillation (ADMRO)

Measure resistance by 
titling the magnetic field.
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Magnetoresistance does not saturate at
the angles when the orbit is closed.

Conventional ADMRO due to the Fermi surface of Cu
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Magnetic Susceptibility of 
Metal Electrons （Pauli paramagnetism）
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Wilson比
Ratio of χ and γ does not change depending on m*.

T 温度

Susceptibility

Pauli paramagnetism 
is χ> 0 and T 
independent.

Optical Properties of Metals （Plasmon） E
x
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When light is irradiated, how the ac electric field enters.
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Diminish as E ∝ eーKr　in metals
Light cannot enter, and is reflected: metallic luster. 
ωp：near ultraviolet in ordinary metals　near infrared in organics
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E ∝ eーiKr　Metals are transparent to UV.
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Thermoelectric power: temperature defference → voltage
cf. Thermocouple

)( 12 TTSV 

Themopower or Seebeck coefficient
1 V/K ~ 1 mV/K

Waste heat → Several 100 K → Generator

S > 0  hole
S < 0　Electron
Charge polarity determination
instead of Hall effect

S ∝ T  metal
S ∝ 1/T　semiconductor

DOS gradient → Different electron numbers aboveEF
→ voltage

Transpor equation
Electron#＝2×(Fermi surface volume)/(2/L)3

Electric fieldε→displace the Fermi distribution byΔf 

Δf

Relaxation time

The current is

→ delta function

or            but

Band → integrate v2 → conductivity　(but  is unknown)

Transpor by T gradient is obtained by replacing
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Both  and T ①

Heat flow U fromthe next order of 　　　　

Integration of any  around the Fermi surface is represented by

　　　　is inserted                is inserted
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Thermopewer of metal
∝ T

For a one-dimensional band:

Putting J = 0 in ①

E    2cos ka
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Themopower∝band curvature

Using       for semiconductors

Thermopower of semiconfuctor ∝ 1/T
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