(10) Correspondence to the free electron model

E=a+ 2ﬂ cos ka Free electron model is the bottom parabola
of the cos function.

E Tk’
Approximated by £ =

2m

I

m is different from the value

for a real electron.

(Effective mass)

4 f3 large = m small— mobile

4 f3 small = m large— not mobile

Upper half of the band is approximated by free electron with m < 0.
Opposite response to electric field,
—  Hole with + charge

(11) Electron band
E

Electron band

Unoccupied

48

Bandwidth

1 Ey
Fermi level

Occupied (electron)

Unoccupied
(hole)

More than half-filled band is a hole band.

Eg
Fermi level

Occupied

(12) 2-Dimensional Square Lattice B
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(12) 2-Dimensional Square Lattice

[E =a+2fcoska+2fcosk,a }

ky / a
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Bandwidth: 8 3
(In general, bandwidth

is2z 3, where z is the

coordination number (the number of the nearby sites.))




(12) 2-Dimensional Square Lattice

[E =a+2fcoska+2fBcosk,a }

k,

[

/

Electron-like Fermi surface
equi-energy surface for E= « .

Hole-like Fermi surface

(12) 2-Dimensional Square Lattice J B J

Cupper oxide

" superconductor l I
(Lal_xsrx)zcu04 ‘_O‘—Clu‘—O‘—(lju*—O*—

k,

'—O*—Clu‘—O‘—(lJu‘—O‘—

high-temperature
o o

Fermi surface of the hole-doped
x superconductor, (La,_Sr,),CuO,

————Fermi surface of the parent La,CuO,

La,Cuw>'0, —

(antiferromagnetic insulator)

Cu:d — do,2 band has one electron

Bloch function is made from j ; for the whole crystal.
inka
Xi = Ze x{n)

Crystal orbitarll is constructed instead of molecular orbital as,
inka
¢=2.2 e z,(n)

Calculate J ¢* Hegdr  from this, and similarly to the usual Mo theory,
R
— = leads to simultaneous equations of c¢;, and the secular equation is

i

Since y ;is Bloch function, the matrix elements, o and f3 are functions of &:

(Half-filled)
(13) Tight-bonding method for more than two atoms in a cell a,(k)-E B.(k) ..
. Lcaomo =2, | Bk anh-E  |=0
For 2 atoms, i=1, 2

a, (k) =] Qo™ i (mNHQ ™ yi(n))dr

=a,+ Zﬁ'ﬁ(n)e’” gy B.(n)= J 7.(0)Hy, (n)dt
y B (k)= J (Z e—zmka * (m)) iy (Zemkal: (n))dz Nearby atoms

inka
= Zﬂy(”)e When interaction [3 exists in the  direction,

|

add a term f5 et
Nearby atoms

B,(n) =] 7 (OH x (n)dz




Energy band for a system with many atomic orbitals

LCAO-MO from all atomic orbitals in a cell

““A{IV, each atom may have more thanone.)  / @B a 0O .
p=2c, o o e/

Make the Bloch function of each X B s Bt R B :

inka
2 ;e 2 leading to an
NXN secular equation o, (k)—E  f3,(k)

Energy band of Ge
! 1

Conductmn

Ge atom

7036y,

6
o i \ band
0

B (k) on(k)-E =0
E
Since each element is a function of &,
this secular equation is solved at each £, to give
N energy levels.
These energy levels for different & are connected
to afford continuous energy bands (right).
Ge
Forgetting k& .
e Energy bands of solids
& E;r?(;iuctton Conduction
l band
Energy gap
C 547eV band
Valence i
band St 112 eV Insulator Metal Semimetal
At Ge 0.66 eV Completely Partially Bands overlap
Filled Filled partially.
Graphite
Semiconductor

Energy band of Ge

il : : i\/ Conducts electricity




A unit of 1D energy band is —7/a < & < 7/a How to make the Brillouin zone.
- 2D, 3D ‘ Bordered by perpendicular bisectors

-4 2D square lattice 4 in between the lattice points
5, 0.00) Lo
T/a (1,1,0) <Ta (1,1,0)
k, T k,
/a <= [nit cell of crystallography
1,0,0 1,0,0
(0.0.0) ky ( <= ) Nearby lattice point — (0.0.0) ky (1,0.0)
—nt/a I la 11/a (Bragg diffraction) < t/a
> -— Unit cell of solid-state physics \ First Brillouin zone
—va (First Brillouin zone)
Solid-state physics defines the k-space from eie: reciprocal lattice points at 27/a.

Crystallography defines the k-space from e2rika: reciprocal lattice points at 1/a.

How to make the Brillouin zone. How to make the Brillouin zone for a oblique lattice.

- Bordered by perpendicular bisectors

4ttt in between the lattice points -4
, T (0,1,0)
27/q, (1,1,0)
ky ky
The same area
L (0,0,0) ke (1,0,0) k, B [k
2n/a
/f First Brilluoin zone

Second Brillouin zone




Brillouin zone and
the Bravais lattices

Reciprocal of centered
is centered

(a) EAZH~7 b (b) Wigner-Seitz b
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(6) #47% & (Orthorhombic) I
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Brillouin zone and
the Bravais lattices

Reciprocal of face centered
is body centered

Reciprocal of body centered
is face centered

(10) =% #%( Trigonal, Rhombohedral) R
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Brillouin zone and
the Bravais lattices
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Fermi surface of metals

(1) Alkali metals Li, Na, K

Fermi surface < trajectory of k< Surface at E=FE=const.

Assuming free electron
—h 2
2 2 2
E=—(k +k +k )=const
2m X y z
leads to a sphere in the k-space.

Fermi surface of
alkali metals is
not deviated from
« J the perfect sphere
T by 1%.

TRINH—C
- o7inim

kg i
' k
. . . 27
Energy interval in the k-space is Ak T

Volume of the Fermi sphere is half of the volume of the 1st Brillouin zone.




Fermi surface of metals Volume of the Fermi sphere

. is the same as the volume of
) (1) Divalent metals Mg, Al the 1st Brillouin zone.

24

3,

we
]
s
2
5

UV~ B2J/-v EI3 S~

Fermi surface of metals

(2) Divalent and trivalent Mg, Al

T

: ]

BgI3J-v

Fermi surface of metals

(3) Transition metals

3d band is narrower than the 4s band.

E
Cu Epp Approximately s'd”!
Fe F,

CriW E; W: highest melting point (3380°C)
< st
d band strong bonds
4s band
Density of states

Fermi surface of metals

(4) Cu, Ag, Au s!d!0— close to alkali metals

E
Cu EppR2

3d band
4s band

Density of states

Nearly a sphere but
Partly connected.




1D metal

27,2

P

/ 2m

k.
& & k\’
o
Unoccupied
Un- ccupied

occupied

= const. leadsto k,=kz =const.

(No momentum for other &, and £, directions.

= cannot move.)

The Fermi surface consists of a pair of planes.

Examples of 1D metals
(1) 1D Platinum Complex KCP
K[Pt(CN),4]Brg 40xH,O

Pt surrounded by CN
Metal 1D Chain

Metal at room temp.
Insulator at low temp.

Examples of 1D metals

(2) NbSe,

(3) Polyacetylene

K HOE 10°Qm)

Examples of 1D metals

(4) Organic Charge-Transfer Complex (TTF)(TCNQ)

Current flow




Examples of 2D metals

2
2 2
E= E(kx + ky) = const. leadsto k2= k2 =k; =const

—  circle
k.

ke k

o vy

Examples
Graphite

Cylindrical Fermi surface 5 gahic/superbondubtots

Organics : energy levels — energy bands

A single molecule of

- TMTSF A crystal of
Se  se (TMTSF),PF
T~ g
Se Se’ (R £\ R
= 4 LUMO
T Sy I e INYVR
LUMO © 8

-9 I e N B R i
I~ —HOMO 5 . 30
> = H ¢l¢,& o
T 1o 5 // } T, O
% -104 ? | / %‘
gl — — HOMO ~“ms{.._|_
2 = 7 == NUFR X
Hoo — ==

s = == I

= Y I X .

J— Y= Consider only

15 HOMO (for donors) or

Energy levels Energy bands LUMO (for acceptors)

Energy band of organic conductors consists of only HOMOs.

Fermi surface of the first organic superconductor
Se  Se Direction Interaction
(TMTSF),PF, Isﬂseﬁ =1 b b
b 2-»2+—+h b
J uooi 1—2 a2 al
11201 o8 -3 8 -al2 a2
al2-b pl
—al2+b  p2
ikb —ikb
Bi=Pn=pe +pe
=2, cos(kb)
¥ ika/2 —ika /2
Bo=Pu=Pae "+B.e
B (meV) ika /2~ kb — ika | 2+kb
HOMO +p0 .e + e
al 200 ﬁ pl ﬂ P2
a2 230 - th )
21 ;8 ut these in '311 - F 1812 il and solve to give:
v ! ﬂ 21 ﬂzz -E

(TMTSF),PF,
 E(K)=2p, cos(kb) £ VA u |
T ASIB+ Ba)eos)) ;a(ﬁ,,l + 20008 ] cfcb)]z
H = LS + (B~ B)sin(~kb)T
Sit1 Homo. .

al 200 s I\
a2 230 - = 4

Y
b 35 © abin >N 9 e
no LA D k’//"
Calculated from MO -05 \ /

G: Yo r XY

A pair of waving planes —  Quasi-1D conductor
Considerable waving reflects the 2D character.




Fermi surface of organic superconductor
Transfer integrals

B -(BEDT-TTE):; [eIszIsj 75 MEEH B (meV)

-1 ¢ c Jili] HOMO
2—2 *c c pl 245
1-2 pl p2 84
bc p2 c 50
c q2 ql 127
b ql q2 68

From MO calc.

=2, cos(kc)
B, = :B; = ﬂpl + ﬂpzei(kb+k0)

[V
] —\\/ A

r cv z r Y

Energy

Cylindrical Fermi surface indicated 2D.

Program available from http://www.op.titech.ac.jp/lab/mori/lib/program.html

(14) Egergy l?and of . . B,—PBi-B, By
one-dimensional alternating chain '® @ '
4 B is alternately 3, and f3,. L |
— Two atoms 1 and 2 in a cell. a

For simplicity, put <y |H|x >=<).H x,>=a=0.
<XAH x> =<)aH x >*= Byettat 3 el

|

f3 , in the -a direction from 1 3, in the a direction from 1
Secular equation is, E
-E ﬁze—zka + ﬁlezku

ika —ika = 0 / \
B.e™ + fe —-E | 'k
The solution is depicted in the right: -7/ ZK ﬁﬂa

1+cos2x=2cos’x

Different 3 for single and double bonds

H H H H

Bi= B Bi# B A dhd
FUNRRN ] \

2181+ B
V2B |
—n/2ck
Reduced zone 1
E E

\ / & \ / k
—nt/a n/a —m/a ‘ ‘ n/a
\ —n/% ﬁ2a

Extended zone

2 ‘

/\ ) Bi B

: Ly

b

-

.

l—nﬂkﬁﬂa 2181 B2

Peierls Insulator: Long periodicity generates a new energy gap
and makes the system insulating.

+/B1: Bz Metal
/\ )
—Tc/2cx /Tc/Za

Insulator

b
B
T
T
T

VI
V%
i




Excise Band structure of the 0 -phase - Cgfw N
< !
O ., tf o7 =
_This generally found structure is called herringbone N [':ﬁ“x
“structure in organic crystals or alternatively 6 -phase SS—
in organic conductors. Calculate the energy bands of f
this structure. |
A unit cell contains two molecules, numbered 1 and 2. l% """""""""""""""""""""""" vl
Transfer #,, running along a, is between two Molecule 1. \ 2 A% 1 - 2)
Transfer ¢, running diagonal (a/2, b/2) etc, is between 4 fa 1
P> s s 4 4
Molecule 1 and 2. @2/;4 I\P@{/p
(1) How many Molecule 1 exist near Molecule 1? T B > N S R
From this, obtain the diagonal element F;. N~
(1) How many Molecule 2 exist near Molecule 1?
From this, obtain the nondiagonal element F',.
(3) Solve the secular equation, and obtain an equation
of E(k,, k,) representing the energy band.
X+ X =
COSX + cosy =2cos J cosTy

Matrix elements are obtained from (transfer)ei(vector)

1—1 from f3, located at ta (P

R =B s pet =28 coska el ®

The same for 2—2 ®/§D.
F,, =2, coska

2—1from f3, located at +a/2+b/2

l_ka+kh l_ka—kh l_—ka+kb i—ka—kb
F,=Be * +Be > +Pe > +pe ?’
ka+ kb ka —kb
=2/, cos +2p, cos 5
The secular equation is

F, —-FE F

" 2 |=0 W E=+F +F,

Fiz Fil —E

E=12p, coska+2f, cos ha +kb

Y 0,0,
g Bl B

of “‘.ﬁ
a Aal

Oul®

B

+2p,cos

ka—kb

Calculate this inserting Ba=101 and B p=25 meV using (tbmap)

ka+ kb ka—kb
P E=12f coskat2f, cos 5 +2p, cos
A\
7ZX and YC degenerate due to L -
k,// screw axis Y ya - T
k// glide plane 7 A | L&
(Practical lattice / AN o Y
periodicity is half.) "'-\\ / A e
zZ X ry [+ r
(a) (b)
(a) Screw axis (b) Glide plane - W e @
; T WoR o
o o -0 W Vo st p | Bp -
O+ _ a2 O+ O+ _ a2 + | ‘224} P CI) )
B, s B, Bp Bp®
@ @ @ 2 ~&

: b
1 e b & --& - o \_;},l;,, B
\ ‘u\%»/a' B N " O 74 R ey Y] d
al2
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