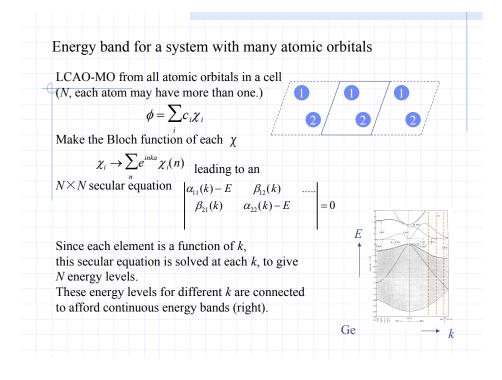
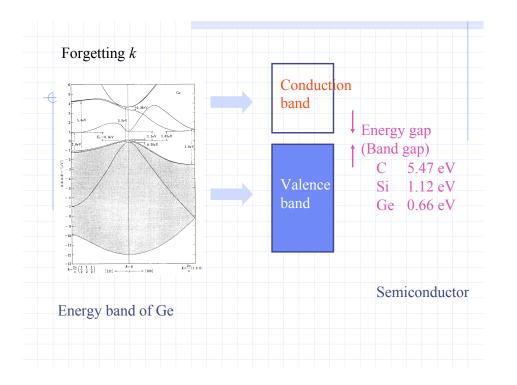


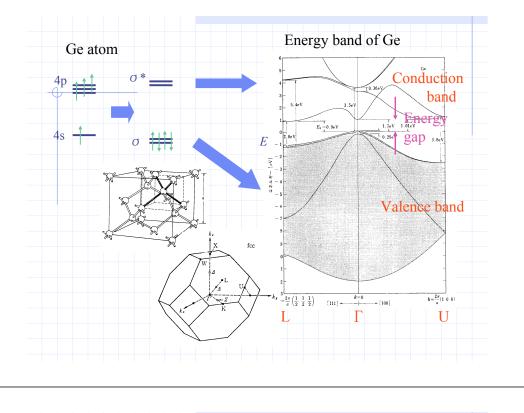
 $= \sum_{n} \beta_{ij}(n) e^{inka}$ When interaction β exists in the *r* direction, add a term βe^{ikr} .

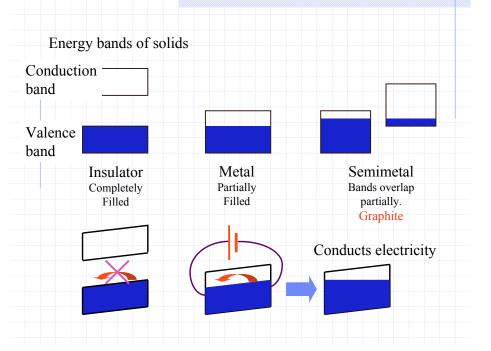
 $\beta_{ij}(n) = \int \chi_i^*(0) H \chi_j(n) d\tau$

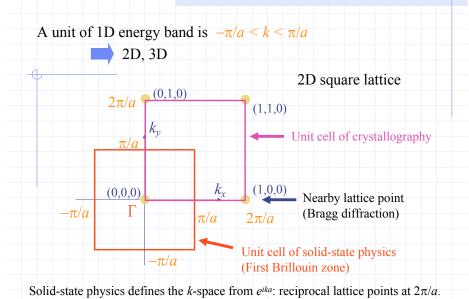
Nearby atoms



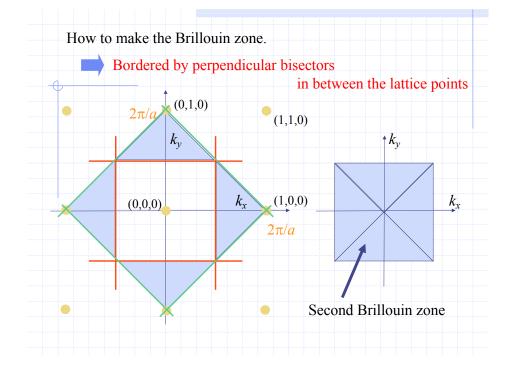


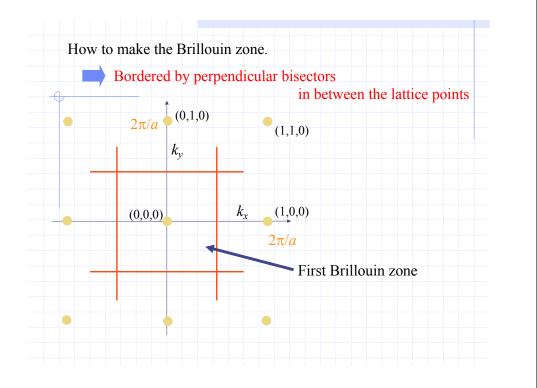


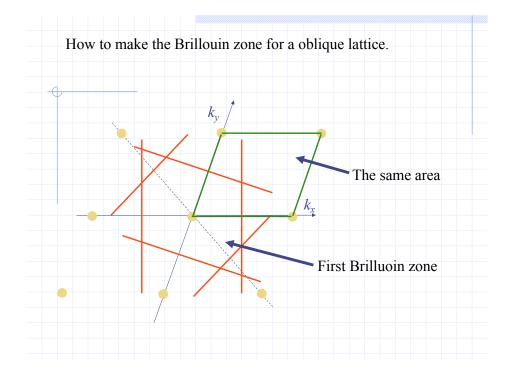


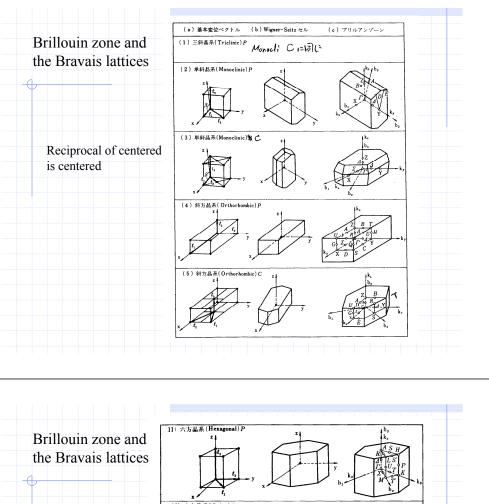


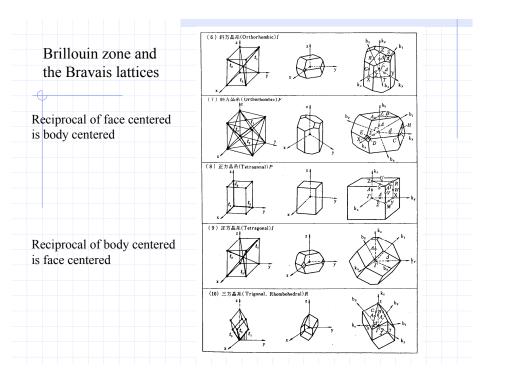
Crystallography defines the *k*-space from e^{2pika} : reciprocal lattice points at 1/a.

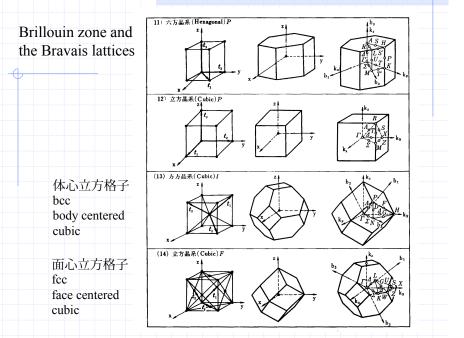


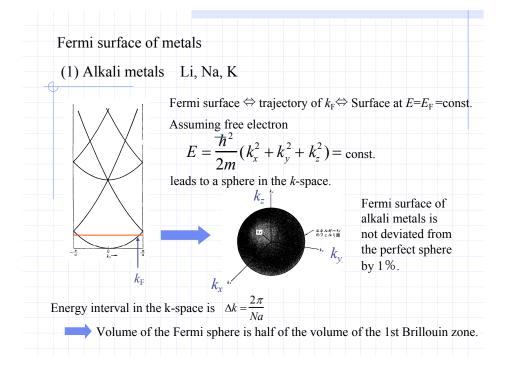


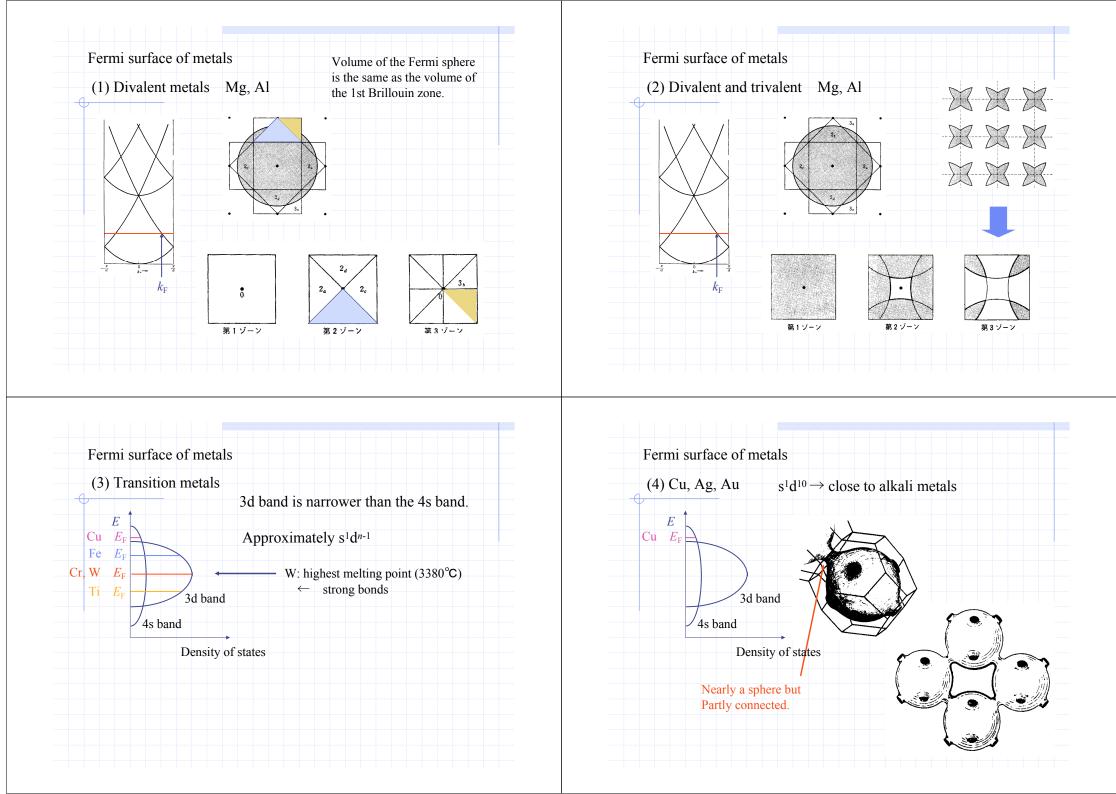


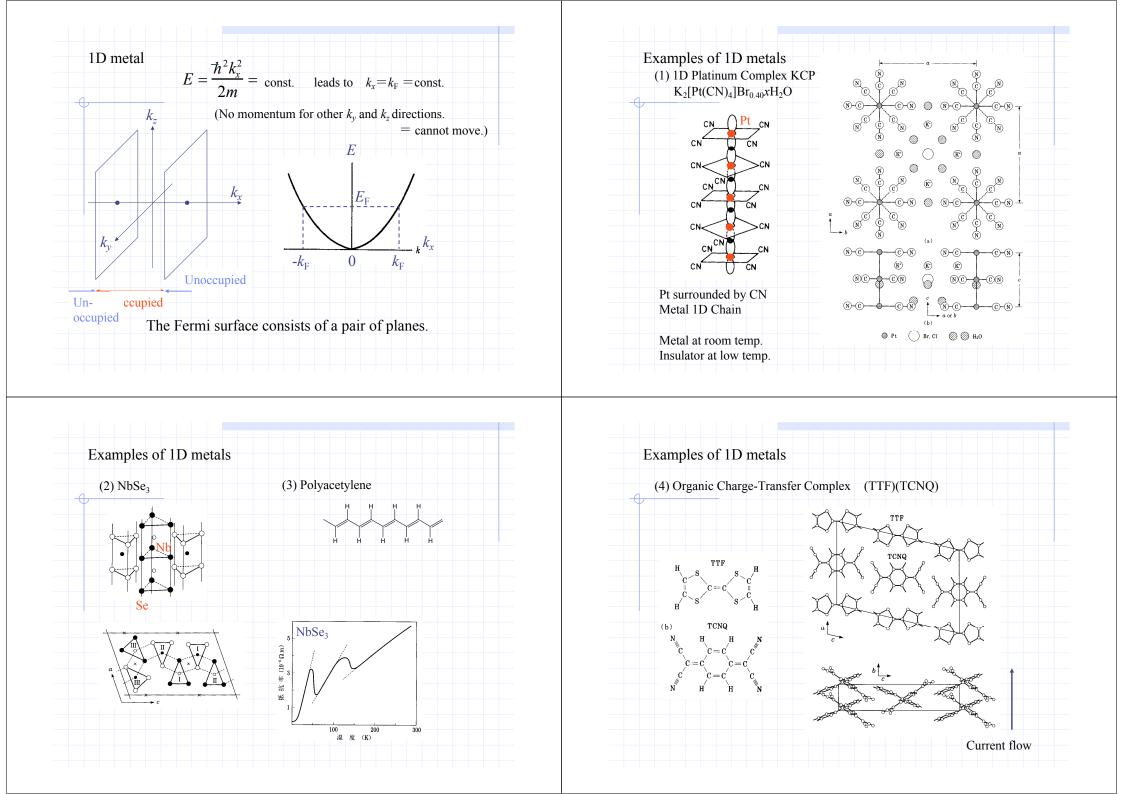


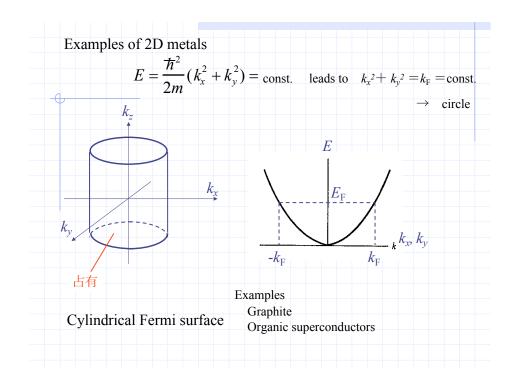


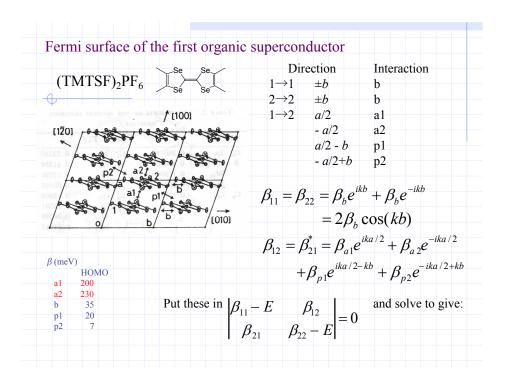


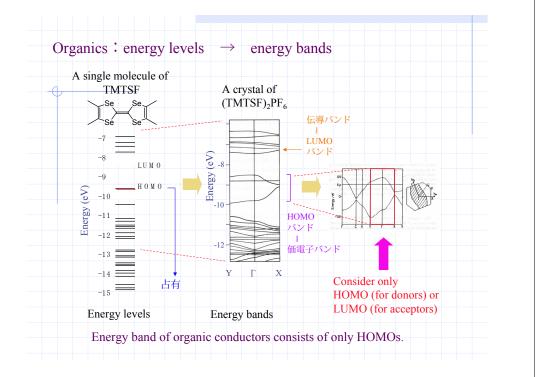


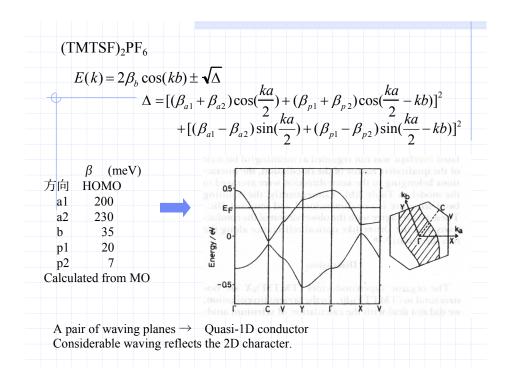


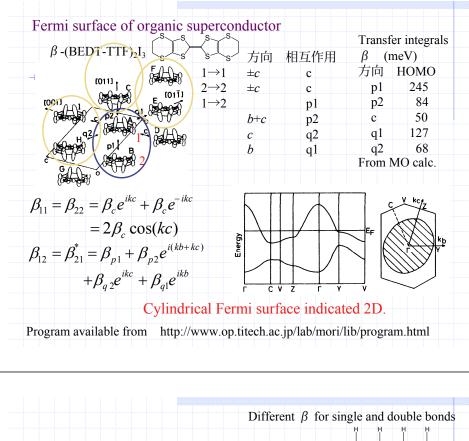


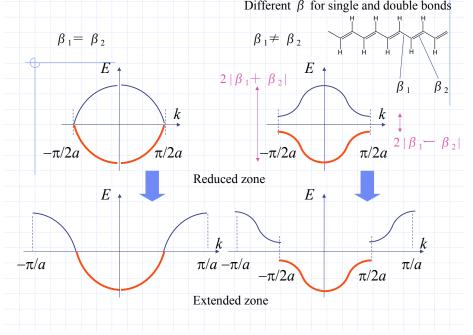


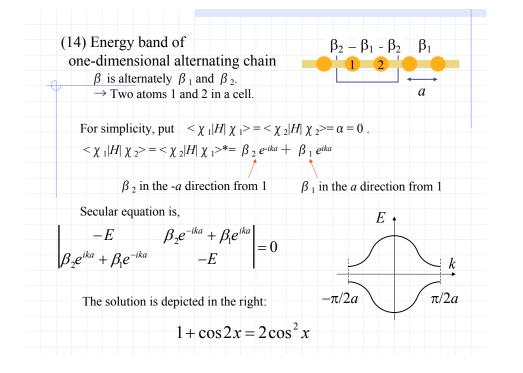


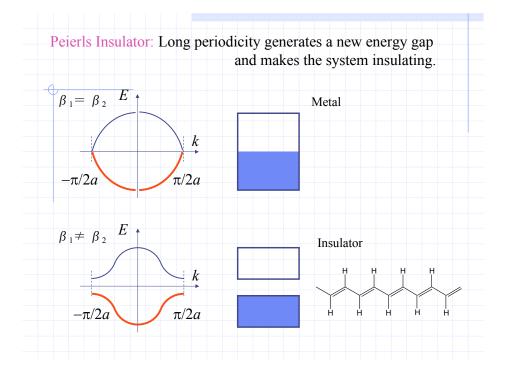


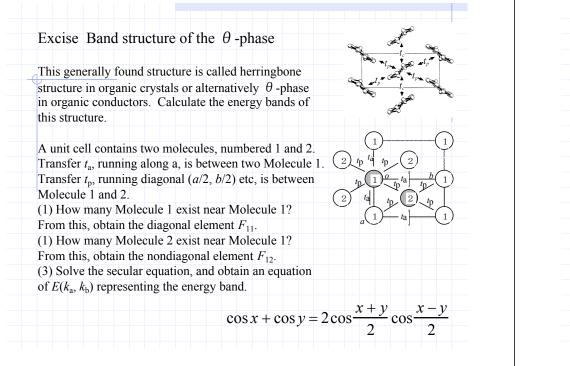


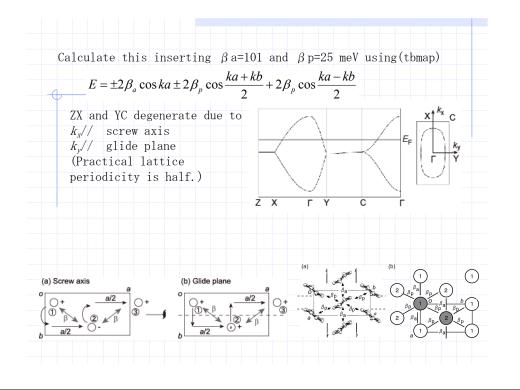












Matrix elements are obtained from (transfer)eik(vector) $1 \rightarrow 1$ from β_a located at $\pm a$ $F_{11} = \beta_a e^{ika} + \beta_a e^{-ika} = 2\beta_a \cos ka$ The same for $2 \rightarrow 2$ $F_{22} = 2\beta_a \cos ka$ $2 \rightarrow 1$ from $\beta_{\rm p}$ located at $\pm a/2 \pm b/2$ $F_{21} = \beta_p e^{i\frac{ka+kb}{2}} + \beta_p e^{i\frac{ka-kb}{2}} + \beta_p e^{i\frac{-ka+kb}{2}} + \beta_p e^{i\frac{-ka-kb}{2}}$ $=2\beta_p \cos\frac{ka+kb}{2}+2\beta_p \cos\frac{ka-kb}{2}$ The secular equation is $\begin{vmatrix} F_{11} - E & F_{12} \\ F_{12} & F_{11} - E \end{vmatrix} = 0 \implies E = \pm F_{11} \pm F_{12}$ $E = \pm 2\beta_a \cos ka \pm 2\beta_p \cos \frac{ka + kb}{2} + 2\beta_p \cos \frac{ka - kb}{2}$