Organic Electronic Materials Physics

Lecute notes available from OCW

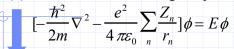
- 1. From molecular orbital to tight-binding model
- 2. Free Electron model and advanced tight-binding model
- 3. Fermi surface and transport properties
- 4. Magnetism and electron correlation
- 5. Organic conductors
- 6. Organic semiconductors
- 7. Organic Electronics

Reference:

Electronic properties of organic conductors, Springer Chapters 2, 3, 4, 5, 7, 8 **Electronic version avairable**

Molecular orbital theory

(1) One-electron Schrödinger equation



Put one electron in the arranged nuclei.

(2) LCAO-MO (Linear Combination of Atomic Orbitals)

$$\phi = \sum_{i=1}^{N} c_i \chi_i$$
 N: total number of ato

$$\phi = \sum_{i=1}^{N} c_{i} \chi_{i} \qquad N \text{ : total number of atomic orbitals}$$

$$(3) E = \frac{\int_{0}^{i} \phi^{*} H \phi d\tau}{\int_{0}^{i} \phi^{*} \phi d\tau} \text{ energy minimum } \frac{\partial E}{\partial c_{i}} = 0 \quad i=1 \sim N$$

 H_2O

(4) Secular equation $N \times N$ Non diagonal: resonance integrals

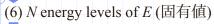
$$\begin{vmatrix} \alpha_{11} - E & \beta_{12} & 0 & \dots \\ \beta_{21} & \alpha_{22} - E & \beta_{23} \\ 0 & \beta_{32} & \alpha_{33} - E \end{vmatrix} = 0 \qquad \alpha_{ii} = \int \chi_i^* H \chi_i d\tau$$
Diagonal: Energy level of *i-th*

$$\beta_{ij} = \int \chi_i^* H \chi_j d\tau$$

$$\alpha_{ii} = \int \chi_i^* H \chi_i d\tau$$

Diagonal: Energy level of i-th AO

(5) *N*-order equation of *E*



Simultaneous equation for c_i

(7) N-set of c_i (固有関数)=Molecular orbital (分子軌道)

 π -Electron System Hückel Method

 σ and π -orbitals are orthogonal.

$$\begin{array}{c|c}
\sigma & 0 \\
\hline
0 & \pi
\end{array}$$

Consider only this part.

 β for nearby C=C is nonzero. Others are zero. All overlap integrals are S=0.

Example ethylene

Bonding energy is

$$H_1$$
 $_2$ H $C=C$ H H

$$\begin{vmatrix} \alpha - E & \beta \\ \beta & \alpha - E \end{vmatrix} =$$

$$\begin{vmatrix} H_1 & 2H \\ C = C \\ H & H \end{vmatrix} \begin{vmatrix} \alpha - E & \beta \\ \beta & \alpha - E \end{vmatrix} = 0 \qquad 2(\alpha + \beta) - 2\alpha = \begin{pmatrix} 2\beta \end{pmatrix}$$

$$\alpha - \beta \longrightarrow \phi = \chi_{A} - \chi_{B}$$

$$\alpha + \beta + \phi = \chi_A + \chi_B$$

Hückel Method for Complicated π -Electron Sytems

Number carbon atoms with π , the total is N.

Wright a $N \times N$ secular equation, with all diagonal terms $\alpha - E$. Nondiagonal terms are β for bonded *i*-th and *j*-th carbons, and zero for non bonded carbons.

| determinant | =0 leads to N-th equation of E, which is solved to obtain N energy levels.

Put electrons from the bottom. (#Electron)=(#Carbon)

Wright the secular equation of cyclobutadiene.

The solution is

$$\alpha \implies$$

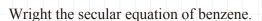
$$\alpha + 2\beta$$

Bonding energy is

There is no energy gain compared with two double bonds

$$2\times 2\beta = 4\beta$$

 χ_1 χ_2 χ_3 χ_4 χ_5



The solution

Bonding energy is

$$\alpha$$
 -2 β

$$\alpha$$
 - β =

$$\alpha + \beta$$

Compared with three doublebonds $2 \times 2.0 = 0.00$, there is 2.00

 $3 \times 2 \beta = 6 \beta$, there is 2β energy gain (delocalization energy).

4*n*+2 membered ring delocalization aromatic 4*n* membered ring no delocalization

(Hückel rule)

Energy Band (Tight-Binding Approximation)

LCAO-MO of a one-dimensional polymer (Hückel MO of polyacetylene)

$$\varphi = \sum c_n \chi_n$$

The secular equation is

$$\begin{vmatrix} \alpha - E & \beta & 0 & \dots \\ \beta & \alpha - E & \beta \\ 0 & \beta & \alpha - E \end{vmatrix} =$$

$N \times N$ 次

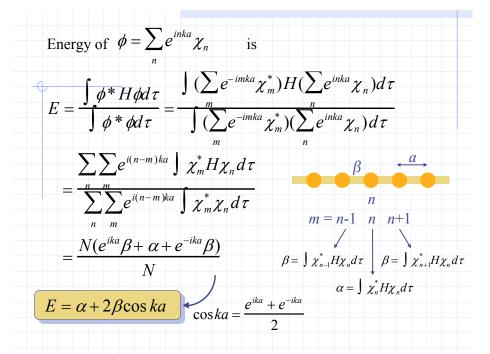
We can directly solve this, but we use another way:

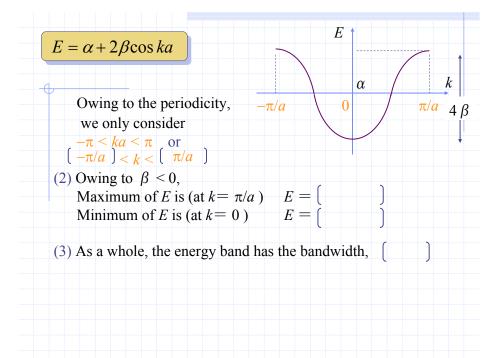
$$\phi = \sum_{n} c_{n} \chi_{n}$$
translation by one unit cell, $r \rightarrow r + a$

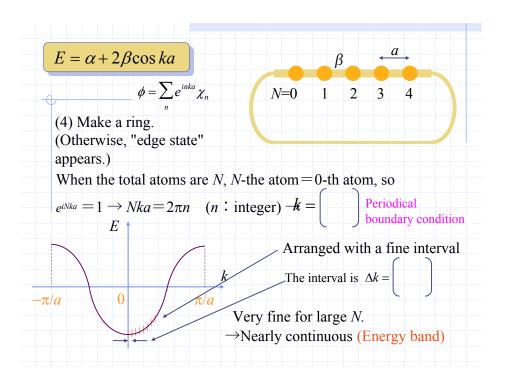
$$\text{Should not change the physics, because it only changes the atom number.}$$
So the electron density $\rho = \phi * \phi$ does not change. Accordingly, $c_{n+1} * c_{n+1} = c_{n} * c_{n}$, or only the phase of c_{n} may change. Thus, we can put $c_{n+1} = c_{n} e^{i\theta} = c_{n} e^{ika}$, Consequently ϕ is:
$$\phi = c_{0} \left[\chi_{0} + e^{ika} \chi_{1} + e^{i2ka} \chi_{2} + e^{i3ka} \chi_{3} + e^{i4ka} \chi_{4} + \dots \right]$$

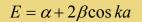
$$= c_{0} \sum_{n} e^{inka} \chi_{n}$$
(Bloch function)

 c_0 is mere a normalization constant.









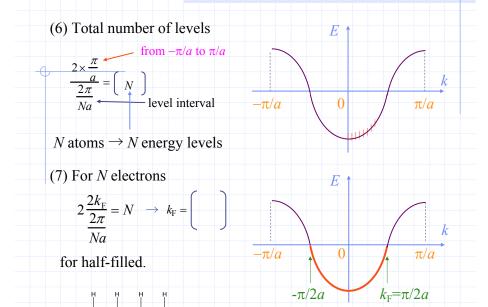
$$(5) \phi = \sum_{n} e^{inka} \chi_n$$

$$k = 0$$
 leads to $\phi = \chi_0 + \chi_1 + \chi_2 + \chi_3 + \dots$
 $k = \pi/a$ leads to $\phi = 0$

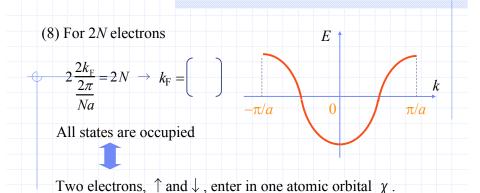
$$k = \pi/a$$
 leads to $\phi =$

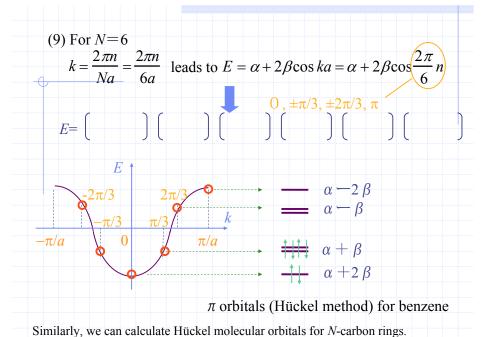
$$\alpha + 2\beta$$
 Completely bonding

The state next to k=0 has extra ephase. When rotated around the solid, the phase shifts by 2π . So the whole solid has only one node.



Polyacetylene without bond alternation





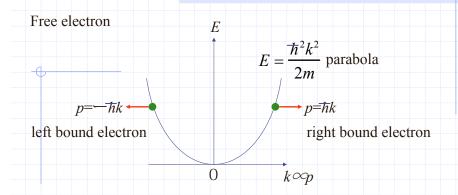
Excise Hückel Molecular Orbital of Cyclopentadienyl

Cyclopentadienyl anion (right) is pentagon and has delocalized negative charge. Calculate the energy levels from the equation of the tight-binding band, $E = \alpha + 2\beta \cos ka$.

- (1) When N=5, k takes the values of 0, $\pm A$, $\pm B$. Show A and B.
- (2) Obtain the energy levels. Use $\cos(2\pi/5) = \cos72^{\circ} = 0.309$, $\cos(4\pi/5) = \cos144^{\circ} = -0.809$.
- (3) Calculate energies of the anion, the radical and the cation.

Free electron approximation

- (1) Simple free electron approximation derived from the first principle of quantum mechanics.
- (2) Electrons in metals, particularly the energy and momentum distribution, are investigated starting from a large number of free electrons.
- (3) Distribution of electrons at finite temperatures are discussed in view of the Fermi statistics: statistical mechanics.



Wave number $k=2\pi/\lambda$ is inverse of the wavelength. The number of waves in unit \times 2 π length.

$$E = \frac{p_x^2 + p_y^2 + p_z^2}{2m} + V \text{ in three dimension.}$$
Schrödinger equation is,
$$[-\frac{\hbar^2}{2m}(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}) + V]\phi = E\phi$$
Eigenfunction (solution) for $V = 0$ is $\phi(x, y, z) = e^{i(k_x x + k_y y + k_z z)}$
Eignevalue (energy) is $E = \begin{bmatrix} E \end{bmatrix}$

We cannot depict k_z at the same time.

Instead of an infinite space, consider a box with a finite length L, and the x=L edge is connected to x=0.

(Otherwise, the edge generates a "surface" state.)

$$\phi(x+L, y, z) = \phi(x, y, z)$$

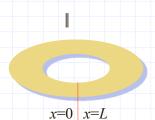
$$e^{ik_xL} = 1 \rightarrow k_xL = 2 \pi n \rightarrow k_x = \left(\begin{array}{c} \\ \end{array} \right)$$

(n : integer)

Similarly for y, z,

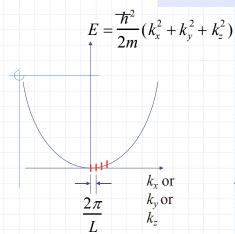
$$k_x = \frac{2\pi}{L} n_x$$
 $k_y = \frac{2\pi}{L} n_y$ $k_z = \frac{2\pi}{L} n_z$

(Consider a cube with L edges.)



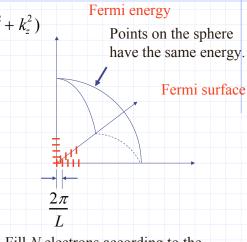
Periodical boundary condition

x=0



Interval of energy levels

- \rightarrow continuous for large L.
- → Energy band



Fill *N* electrons according to the Pauli's exclusion principle. Starting from the origin with the minimum energy, to the inside of a sphere with radius $k=\sqrt{k_x^2+k_y^2+k_y^2}$

Volume of a sphere with radius k is

$$2\frac{\frac{4\pi}{3}k^3}{(\frac{2\pi}{L})^3} = N \qquad \qquad = N \text{ where } V = L^3$$

Interval of states (3D)

Electron with the highest energy (Fermi energy) is

One energy level has two electrons with \uparrow and \downarrow spins

 $k_{\rm F}^2 = k_x^2 + k_y^2 + k_y^2$

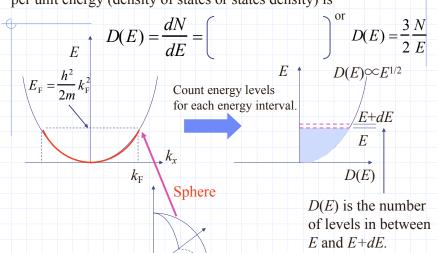
$$\langle E_{\rm F} = \frac{\hbar^2}{2m} k_{\rm F}^2 \rangle$$

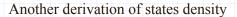
$$E_{\rm F} = \frac{\hbar^2}{2m} k_{\rm F}^2 = \frac{\hbar^2}{2m} \times \left($$

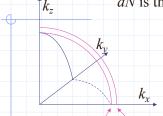
is solved as for N to give,

$$N = \frac{V}{3\pi^2} \times \left($$

Differentiate as for E, and the number of energy levels per unit energy (density of states or states density) is

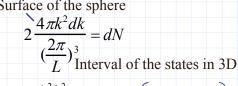






dN is the number of states in between E and E+dE.

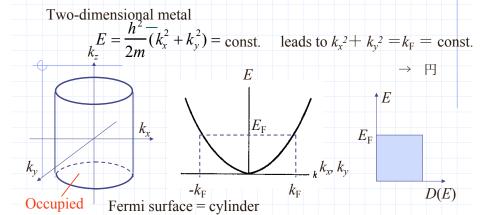
Surface of the sphere



$$E = \frac{h^2 k^2}{2m} + b dE = 0$$

$$D(E) = \frac{dN}{dE} = 2\frac{4\pi k^{2}}{(\frac{2\pi}{L})^{3}} \frac{1}{\frac{\hbar^{2}k}{m}dk} = \frac{V}{2\pi^{2}} \frac{2m}{\hbar^{2}} k = \frac{V}{2\pi^{2}} (\frac{2m}{\hbar})^{\frac{3}{2}} E^{\frac{1}{2}}$$

$$k = (\frac{2mE}{\hbar^{2}})^{\frac{1}{2}}$$
The same conclusion

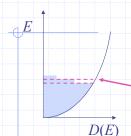


Area of the circle

$$2\frac{\pi k^2}{(\frac{2\pi}{L})^2} = N \longrightarrow N = \frac{L^2}{2\pi} k^2 =$$

$$D(E) = \frac{dN}{dE} =$$

Fermi statistics: only one electron can occupy a state.



Occupied by N_i electrons

 N_i electrons are in the C_i states with energy E. We cannot distinguish N_i electrons, so that the statistical weight is the number to choose N_i from C_i

$$W_i = \frac{C_i!}{N_i!(C_i - N_i)!}$$

The definition of entropy in statistical mechanics is

$$S = k_{\rm B} \ln W = k_{\rm B} \ln \prod_{i} W_{i} = k_{\rm B} \sum_{i} \ln W_{i} = k_{\rm B} \sum_{i} \ln \frac{C_{i}!}{N_{i}!(C_{i} - N_{i})!}$$

$$= k_{\rm B} \sum_{i} (C_{i} \ln C_{i} - N_{i} \ln N_{i} - (C_{i} - N_{i}) \ln (C_{i} - N_{i}))$$

Stirling' equation $\ln N! = N \ln N - N$

The realized distribution of N_i minimizes the Gibbs free energy $F=E-TS-\mu N$ where $E=\sum N_i E_i$, $N=\sum N_i$. So differentiation of F as for N_i is zero to give,

$$\frac{\partial F}{\partial N_i} = E_i + k_B T (\ln N_i - \ln(C_i - N_i)) - \mu = 0$$

$$C_i - N_i = 0$$
Occupation
$$f(E_i) = \frac{N_i}{C_i} = 0$$

$$T = 3000 \text{ K}$$
Fermi-Dirac distribution

f(E)50000 K for metals

> When $T \neq 0$, f(E) changes continuously from 1 to 0 with the width of k_BT .

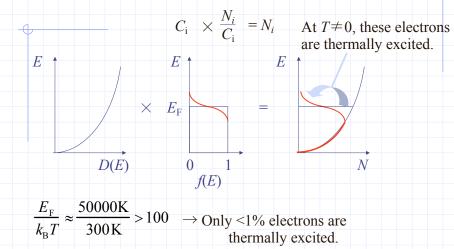
When T=0:

$$E < \mu \quad f(E) = \frac{1}{e^{-\infty} + 1} = \left(\qquad \right)$$

$$E > \mu \quad f(E) = \frac{1}{e^{+\infty} + 1} = \left(\frac{1}{e^{+\infty} + 1} \right)$$

 $E_{\rm F} = \mu$: chemical potential

The real electron number is $D(E) \times f(E)$

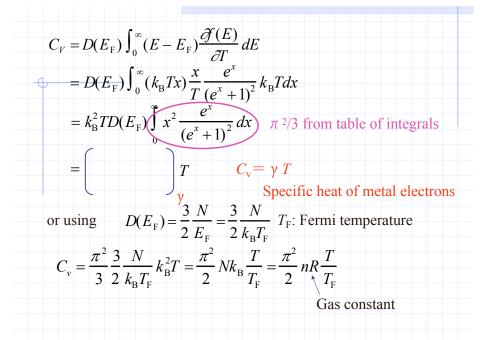


Internal energy of metal electrons
$$U(T) = \int_{0}^{\infty} (E - E_{F}) D(E) f(E) dE$$
Specific heat Measured from $E_{F} = 0$.
$$C_{V} = \frac{\partial U}{\partial T} = \int_{0}^{\infty} (E - E_{F}) D(E) \frac{\partial f(E)}{\partial T} dE$$

$$T \text{ appears only in } f(E).$$
where
$$f(E_{i}) = \frac{1}{\frac{E_{i} - \mu}{k_{B}T}} = \frac{1}{e^{x} + 1}$$

$$\frac{\partial f(E)}{\partial T} = \int_{0}^{\infty} dE = \frac{1}{k_{B}T}$$

$$\frac{\partial f(E)}{\partial T} \text{ is nonzero only near } E_{F}.$$
so that approximated to be
$$D(E) \sim D(E_{F}).$$



If free electron is an ideal gas, according to the Dulong-Petit theorem, the specific heat is $C_v=3R$. However, it is less than $\frac{T}{T_F} \approx \frac{300\,\mathrm{K}}{50000\,\mathrm{K}} \approx 10^{-2}$ Owing to the Fermi distribution, only k_BT electrons near E_F are excited, and contribute to the specific heat.

Metal electrons are "Fermi" particles!
Only phonons at high T

Fermi gas cf. Classical gas C_v At low temperatures (<50 K), the lattice vibration (photon) decays as $C_v \propto T^3$ so that $C_v = \gamma \ T + \beta \ T^3 \qquad C_v \qquad T = \gamma + \beta T^2$ free electron phonon $T = T \sim T^2$ Experimental estimation of $T \sim T^2$

Insert N_i particles in C_i levels, allowing any particles in the same level.

The number to arrange N_i particles and C_{i-1} partitions.

$$W_{i} = \frac{(C_{i} + N_{i} - 1)!}{N!(C_{i} - 1)!}$$

$$C_i + N_i - 1$$

$$C_i$$
-1 $\rightarrow C_i$ gives

$$\ln W_{i} = (C_{i} + N_{i}) \ln (C_{i} + N_{i}) - N_{i} \ln N_{i} - C_{i} \ln C_{i}$$

Put this in $F=E-TS-\mu N$, and differentiation as for N_i is put zero to

$$\frac{\partial F}{\partial N_i} = \left(\right.$$

$$C_i + N_i = e^{\frac{E_i - \mu}{k_B T}}$$

$$f(E_i) = \frac{N_i}{C_i} = \begin{bmatrix} \\ \\ \\ \end{bmatrix}$$
 Bose-Einstein statistics
$$E \downarrow \\ T \to 0 \\ E_i \to \mu > 0 \quad e^{+\infty} \to +\infty \quad f(E) \to 0 \\ E_i \to \mu = 0 \quad e^0 \to 1 \quad f(E) \to +\infty$$
 All particles go to the lowest level.
$$f(E) \to 0$$

$$E_i - \mu \rightarrow \hbar \omega$$
 gives $f(E_i)$

$$f(E_i) = \frac{1}{e^{\frac{h\omega}{k_B T}} - 1}$$
Pl

Planck distribution

Phonon (lattice vibration) is Bose-Einstein particle. Photon (light) is the same \rightarrow black body

$$f(E_i) = \frac{1}{e^{\frac{E_i - \mu}{k_B T}}} \left\{ + \left\{ - \left\{ - \left\{ - \frac{E_i - \mu}{k_B T} \right\} \right\} \right\} \right\}$$

Ouantum statistics

$$E-\mu >> k_B T$$
 leads to $e^{\text{large}} >> 1$ $f(E_i) = e^{-\frac{E_i - \mu}{k_B T}}$

$$f(E_i) = e^{-\frac{E_i - \mu}{k_{\rm B}T}}$$

Boltzmann (classical) distribution

Classical distribution

so

Each i-th state has n_i particles, with the total $N=\sum n_i$ particles.

The statistical weight is

statistical weight is
$$W = \frac{N!}{n_1! \, n_2! \, n_3! \cdots} \qquad \ln N! = N \ln N - N$$
Stirling's equation

$$\ln N! = N \ln N - N$$

$$\ln W = \ln \frac{N!}{n_1! n_2! n_3! \cdots} = N \ln N - \sum_i n_i \ln n_i$$

Put this in $F=E-TS-\mu N$ ($S=k_B \ln W$)

$$F = \sum_{i} E_{i} n_{i} - k_{\mathrm{B}} T(N \ln N - \sum_{i} n_{i} \ln n_{i}) - \mu \sum_{i} n_{i}$$

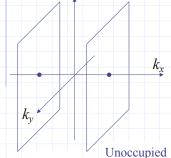
Differentiation as for n_i is zero to give, $f(E_i) = n_i = \bigcap$ Boltzmann sidtribution EBose distribution: Particles with integer spin quantum number Light (photon), Lattice vibration (phonon), ⁴He Boltzmann distribution: classical particles f(E_i) = $e^{\frac{E_i - \mu}{k_B T}}$ f(E_i) = $\frac{1}{e^{\frac{E_i - \mu}{k_B T}}}$ Fermi distribution: Particles with half-integer spin quantum number : electron, proton, neutron, ³He Everything approaches to Boltzmann at E_i - $\mu >> k_B T$.

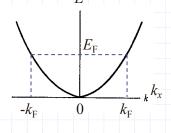
One-dimensional metal

$$E = \frac{\hbar^2 k_x^2}{2m} = \text{const. leads to} \quad k_x = k_F = \text{const.}$$

 k_z (No momentum for k_y , k_z

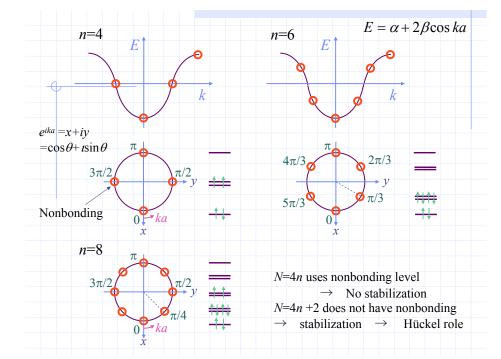
=does not move)

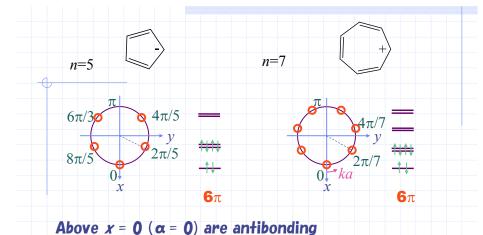




Unoccupied Unoccupied

Fermi surface consists of a pair of planes.





→ 4n+2 rule for electrons instead of carbon atoms

 \rightarrow Always 6π system is most stable

