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2. Free Electron model and advanced tight-binding model
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Molecular orbital theory +Ze H,0O

(1) One-electron Schrodinger equation ® e
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Put one electron in the arranged nuclei.

) LCAO-11\>/IO (Linear Combination of Atomic Orbitals)

l ¢ _ ZCZ 7, N ! total number of atomic orbitals
(3) E = —J-—¢ gz energy minimum - — = i=1~N
a,
(4) Secular equation NXN e
(2 -E :6’12 ...... ﬂl] = J Zlede

= ) 1 Hydz
Diagonal : Energy level of i-th AO

Non diagonal : resonance integrals
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(5) N-order equation of £

(6) N energy levels of E (&4 1)
Simultaneous equation for c;

(7) N-set of c; ([&145 B840 = Molecular orbital (7311

7 -Electron System  Hiickel Method

[l 0 and 7 -orbitals are orthogonal.

Y 0

0 Consider only this part.

1 for nearby C=C is nonzero. Others are zero.
[ All overlap integrals are S=0.

Example ethylene Bonding energy is
H\l 2 /H a—-F ﬂ

H/C=C&H 5 a-E| 2(a+B)*—2a=[ 2 }

- — d=xa—1s gg
a+f H- d=rxa+xn gg




Hiickel Method for Complicated 7 -Electron Sytems

1 Number carbon atoms with 7, the total is N.
[1 Wright a NX N secular equation, with all diagonal terms o —F
1 Nondiagonal terms are f3 for bonded i-th and j-th carbons,

and zero for non bonded carbons.

1| determinant | =0 leads to N-th equation of E, which is solved
to obtain N energy levels.

[ Put electrons from the bottom. (#Electron)=(#Carbon)

Wright the secular equation of cyclobutadiene.

Hi 2 H
c—C’
H4 3°H

The solution is

o -2 —
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a+2f3 -H—

Bonding energy is

)

There is no energy gain compared with two double bonds
2X2[B3 =40

Wright the secular equation of benzene.

a+f

a+2f -f—

The solution

a-2f3 —
a-f ==
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Compared with three doublebonds
| 3X2 =6, thereis 2 3 energy gain

Bonding energy is

3 (delocalization energy).

- 4n+2 membered ring  delocalization aromatic
4n membered ring no delocalization
(Hiickel rule)

Energy Band (Tight-Binding Approximation)

. LCAO-MO of a one-dimensional polymer B —
" (Hiickel MO of polyacetylene)
Xt Xo tXs Xa Xs
0=2.c.1,
n H H H H
The secular equation is 2 4
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We can directly solve this, but we use another way:




$=2.C01n B

n
_, translation by one unit cell, » = rt+a X1 X2 X3
“should not change the physics, because

it only changes the atom number.

So the electron density p = d) ¢ does

not change. Accordingly, ¢, * ¢, .1 = ¢,*¢,
or only the phase of ¢, may change. Thus, we can put
C,1= ¢, €= c,e*s Consequently ¢ is:
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(Bloch function)

X4 Xs

Xo—X3—Xa—KXs—Ke
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Energy of ¢= Ze Xn is
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¢ is mere a normalization constant. / 1 J 4 Hy dr
_ ika —ika " "
{E—a+2ﬂcoska } Toska e e
2
£ a
[E:a+2ﬂcoska } : £E=a+2ﬂcoska } f —
N \ k ‘ < p=2.¢"z, N=0O 1 2 3 4
] Owing to the periodicity, 48 (4) Make a ring !
we only consider l‘ (Otherwise, "edge state"
ot appears.)

(-ma) [ wa )
(2) Owing to 3 <0,

Maximum of E'is (at k= n/a) E = [ ]

Minimum of E is (at k&= 0) E= [ ]

(3) As a whole, the energy band has the bandwidth, [

When the total atoms are NV, N-the atom = 0-th atom, so

E boundary condition

Arranged with a fine interval
/ / The interval is Ak = [ ]
Very fine for large N.
%Nearly continuous (Energy band)




[ E =a+2pcoska }
() ¢=Zn:ei”k“;cn

]
k=0leadsto  P=Xot i+ Lt Xst
k= n/aleadsto ¢= [ ]
E 28
o — i i i i i
\ / ®© 00000
a K All intervals have nodes.
/ — Completely antibonding
0 +2p 000000
[ 27 Completely bonding

The state next to k=0 has extra € v phase. When rotated around the solid,
the phase shifts by 2. So the whole solid has only one node.

(6) Total number of levels E

from —n/a to n/ ‘ ;

/’ oz .— from—m/a to n/a \ /
27za :[ N ] Lk
Na gT— level interval \ W/

N atoms — N energy levels

(7) For N electrons E

2yl ) N |
2z | -
Na 1 *
for half-filled. N j

ky=n/2a

-mt/2a

H H H H
YYTYYT i ~
VL L Polyacetylene without bond alternation

(8) For 2N electrons E

%ﬁ%’%ﬁN >k :[ } \ / -
E T
All states are occupied

| |

Two electrons, T and | , enter in one atomic orbital X -

(9) For N=6
2zn  27n 2
4—:@25 leads to £ = a+2fcoska=a+ 2,6’00577[11
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E
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x\‘ a+f
a+2p

7 orbitals (Hiickel method) for benzene

Similarly, we can calculate Hiickel molecular orbitals for N-carbon rings.




Excise Hiickel Molecular Orbital of Cyclopentadienyl

. Cyclopentadienyl anion (right) is pentagon
| and has delocalized negative charge.
Calculate the energy levels from the

equation of the tight-binding band, E = ar+ 2 cos ka .

(1) When N=5, k takes the values of 0, +A. +B. Show A and B.

(2) Obtain the energy levels.

Use cos(21/5)=c0s72°=0.309. cos(4n/5)=cos144°= -0.809.
(3) Calculate energies of the anion, the radical and the cation.

Free electron approximation

(1) Simple free electron approximation derived from
" the first principle of quantum mechanics.

(2) Electrons in metals, particularly the energy and
momentum distribution, are investigated starting from
a large number of free electrons.

(3) Distribution of electrons at finite temperatures are
discussed in view of the Fermi statistics:

statistical mechanics.

Free electron E
272
E= parabola
B AEE—— 2m
p=—Tk p=hk
left bound electron right bound electron
0 kop

Wave number k=27 /A is inverse of the wavelength.
The number of waves in unit X 2 71 length.

2 2 2
P Sl A

=

- in three dimension.
Schrodinger equation is,
w0 0 o?

o G +0}2 +&2)+V]¢=E¢

[ . . : i(koxth,y+k.z)
Eigenfunction (solution) for ¥=0is @(x,y,z) = e T
Eignevalue (energy) is £ :[ J

E

We cannot depict £,
at the same time.

X




Instead of an infinite space, consider a box with a finite length L,
and the x=L edge is connected to x=0.

~(Otherwise; the edge generates a

"surface" state.)
¢ (xtL, y,2)= ¢ (x, y, 2)

x=0 X=
elkazléka:2]'[n—) kx:[ ]
(n - integer) "

Similarly for y, z,

2 2 2
kx:—ﬂ.nx :—ﬂ.n kz :_ﬂ.nz
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(Consider a cube with L edges.) x=0|x=L

Periodical boundary condition

o, ., Fermi energy
il 2m (K +k, + k) Points on the sphere

have the same energy.

/

Fermi surfac

W

NN
K T

- ko
27 k, or 27
L ke L
Interval of energy levels Fill N electrons according to the
— continuous for large L. Pauli's exclusion principle.
— Energy band Starting from the origin with the

minimum energy, to the inside
of a sphere with radius k=4 . kA k k)2

Volume of a sphere with radius £ is
4z,

& 22372_ =N -[ }zN where V=1’
3
( T )
Interval of states (3D)  Electron with the highest energy
(Fermi energy) is
2=k 2+ 2+ 2

h* h?
E =—Fk’=—x
£ " om T 2m [

One energy level has two electrons
with T and | spins

is solved as for N to give,

RY/4

Differentiate as for £, and the number of energy levels
per unit energy (density of states or states density) is

4 dN = 3N
E sl dE [ J 2E
E D(E)ccEY2
Count energy levels
for each energy interval.
F---Z-Z-Z20 ﬁdE
L\ k,
D(E)
Sphere
D(E) is the number

of levels in between

‘ E and E+dE.




Another derivation of states density

k, dN is the number of states in between £ and E+dE
— Surface of the sphere
N N4 gk dk
& LT
(ﬁ 3
S\ . L ”Interval of the states in 3D
Rl % 272
N e
E =—— dE =
E  E+dE 2m 4 [ J
2
D(E)—dN 247zk 21 1 V22_r2n L
dE ( )3 M dk 27" h T 2
I = 2mE % The same
=( K2 ) conclusion

Two-dimensiorzlal metal

h _
E= E(kj + ky2 ) =const. leads to k2t k? =ky = const.

k.
7 — FI]
- v
F
k| A k. k,
S o

Occupied ' Fermi surface = cylinder

Area of the circle
2

2;{{ =N =N = zkzz[
St 27

o2

|

Fermi statistics: only one electron can occupy a state.
G

\/E

@000O®OO0

Occupied by N, electrons

= —— '\

N, electrons are in the C; states with energy E.
We cannot distinguish N, electrons, so that the statistical
weight is the number to choose N, from C;:

D(E) |
p-—CL
The definition of entropy in statistical mechanics is NG =N))!
C!
S=kyInW =k,In| | W, =k 2 W, =k, 2 In———F——
¥ =y T, =k = by T S

= k2 (C,InC,— N 0N, — (€, - N In( €, — M)
: \
Stirling' equation InN!= NInN — N

The realized distribution of N, minimizes the Gibbs free energy
F=E-TS-uN where E=2NE;. N=2N,.
P So differentiation of F as for M, is zero to give,

— =FE,+k;T(InN,-In(C,—N,))—u=0
Ci _N Occupation N [

) SN e (R =

i i

7=3000 K 7=300 K

1 N‘/TZO K Fermi-Dirac distribution
f(E)O \. g WhenT=0: |
50000 K for metals — Ey , E<u f(B)= e” +1 T [
When 7+0, f(E) changes

E>u f(B)=——=

continuously from 1 to 0 et 41
with the width of k7.

Er= u * chemical potential

~




The real electron number is D(E) X AE)

N;
4 G X = N; At T#0, these electrons
: are thermally excited.
E E E
>< EF K\ = 7
D(E) 0 1 ’ N
AE)
E,  50000K
~ >100  — Only <1% electrons are

kT 300K thermally excited.

Internal energy of metal electrons

u(r) =7 (E - E)D(E)f(E)dE

imat Measured from £y = 0.
E
¢, == - L ar
" T appears only in f(E).
1 1
where JE) =T =5 +1 x= it gives
kT €
541 B
i = dx = d_E 1 EF
a kg T \
F ) -
#) is nonzero only near Ey. 0
so that approximated to be %@
D(E)~D(Ey). ]\ E

IE) 45

C, =D, [ (E-E,)

> kyTdx
1y
712/3 from table of integrals
Specific heat of metal electrons
y3 N 3 N
orusing  IX(E;)= EE_ NN T¢: Fermi temperature
BF
PIN o BT R T

32k Y T 2P 2 \ T
Gas constant

If free electron is an ideal gas, according to the Dulong-Petit theorem,
the specific heat is C,==3R. However, it is less than

T _ 300K o

~
~

—_—~
~

7. 50000K

) Owing to the Fermi distribution, only k7 electrons near
Er are excited, and contribute to the specific heat.

) Metal electrons are "Fermi" particles! Only phonons
) at high T
W) Fermigas  of. Classical gas C, \
At low temperatures (<50 K), the lattice
vibration (photon) decays as C,0CT3 so that T

=yT+ 3P ‘—:7+,3T T

free electron phonon

Experimental estimation of y —D(Ey) from
the low-temperature (<4 K) specific heat. y { ™




Bose-Einstein statistics c
i

Insert N; particles in Cjlevels, allowing g
. any particles in the same level. ()
o

. ]

The number to arrange N, 1
particles and C-1 partitions. 000000
Ci~+

_(C N D)
ONNC -1 N1
Ci-1— C; gives
InW,=(C,+N,)In(C,+ N,)-N,InN,-C,InC,
Put this in F=E-TS-uN, and differentiation as for N, is put zero to
x _ [ 0

N, By
‘ Ci+Ni_ekBT
N

i
i

f(E)= % = Bose-Einstein statistics
i E
val
7—0
E—pn>0 et>*—> +oco AE)—0 |l
i u
A= =001 RE)— +0 oy
All particles go to the lowest level. NE)
= - 1
E—n—Tw gives ME)=—0% Planck distribution
et —1

Phonon (lattice vibration) is Bose-Einstein particle.
Photon (light) is the same — black body

el (4] |
LLEE Sy b |

Quantum statistics

_Eu
E-p>>kg T leads to elarge>>] f(E)=e T
Boltzmann (classical) distribution

N N I I
Classical distribution

741 @
Each i-th state has n; particles, with the n: 'Y Y
total N=2 n; particles. n, 000000

The statistical weight is 700000000
|
o— InN'= NInN — N
mlnylnsl-- Stirling's equation
SO

|
InW = IHL =NInN —Znilnni

nln\n,!l -
Put this in F=E-TS-uN (S=kglnW)
Fzinni_kBT(NlnN_Znilnni)_luzni

Differentiation as for n; is zero to give,
F
—_ =0
¥ AN,
i E)=n. = Boltzmann sidtribution
HE)=n,=
1
E SE )= E,—u
kB
e -1
Bose distribution . Particles with integer spin quantum number :

Light (photon), Lattice vibration (phonon), “He

E—u

—_—

1 f(Ey=e ™" f(E)=—

\ Boltzmann distribution : classical particles

==

K Eizs
0 AE) e 41
™~ Fermi distribution : Particles with half-integer spin

quantum number - electron, proton, neutron, 3He

Everything approaches to Boltzmann at E;- |1 >>kgT.




One-dimensional metal

nk?
E= 2mx = const. leads to k., =k = const.
h k. (No momentum for £, k,

=does not move)

® ® kx
ky
Unoccupied
Occ.
Unoccupied

Fermi surface consists of a pair of planes.

E=a+2pcoska

etk =x+iy
=cos @+ sind T

37/2 7T/ 2y e
e ===
Nonbonding 0B ka _ —_
X
n=8

N=4n uses nonbonding level

— No stabilization
N=4n +2 does not have nonbonding
— stabilization —  Hiickel role

FEEN

n—=

i

6r

Above x = 0 (a = 0) are antibonding
- Always 6mrsystem is most stable
- 4n+2 rule for electrons instead of carbon atoms

@ 5 membered ring —>anion is 6 71 — stable anion

o Ferrocene

@ Inonic compound consisting of Fe?*and
Fo2+ organic anion

O —Electrochemical standard soluble in
~ organic solvent (oxidized to Fe3")

5 membered ring —anion is 6 11
= — stable anion
7 membered ring —>cation is 7 71
—stable cation

Naphtharene C,,Hg isomer but polar!

Azulene




