Organic Electronic Materials Physics

Lecute notes available from OCW

1．From molecular orbital to tight－binding model

2．Free Electron model and advanced tight－binding model
3．Fermi surface and transport properties
4．Magnetism and electron correlation
5．Organic conductors

6．Organic semiconductors

7．Organic Electronics

Reference：

Electronic properties of organic
conductors，Springer
Chapters 2，3，4，5，7， 8
Electronic version avairable

Molecular orbital theory
（1）One－electron Schrödinger equation

$$
\begin{array}{r}
{\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}-\frac{e^{2}}{4 \pi \varepsilon_{0}} \sum_{n} \frac{Z_{n}}{r_{n}}\right] \phi=E \phi} \\
\text { Put one electron in the }
\end{array}
$$

Put one electron in the arranged nuclei．
（2）LCAO－MO（Linear Combination of Atomic Orbitals）
＋

$$
\phi=\sum_{i}^{N} c_{i} \chi_{i} \quad N: \text { total number of atomic orbitals }
$$

（3）$E=\frac{\int_{i}^{i} \phi^{*} H \phi d \tau}{\phi^{*} \phi d \tau}$ energy minimum $\quad \frac{\partial E}{\partial c_{i}}=0 \quad i=1 \sim N$
（4）Secular equation $N \times N \quad$ Non diagonal ：resonance integrals

$$
\left\lvert\, \begin{array}{cccc|c}
\alpha_{11}-E & \beta_{12} & 0 & \cdots . . . & \beta_{i j}=\int \chi_{i}^{*} H \chi_{j} d \tau \\
\beta_{21} & \alpha_{22}-E & \beta_{23} & =0 & \begin{array}{c}
\alpha_{i i}=\int \chi_{i}^{*} H \chi_{i} d \tau \\
0
\end{array} \\
\beta_{32} & \alpha_{33}-E & -E & \begin{array}{c}
\text { Diagonal : Energy level of } i \text {-th AO }
\end{array}
\end{array}\right.
$$

π－Electron System Hückel Method
σ and π－orbitals are orthogonal．
0
（6）N energy levels of E（固有値）
1．Simultaneous equation for c_{i}
（7） N －set of c_{i}（固有関数）$=$ Molecular orbital（分子軌道）

$$
\left.\left\lvert\, \begin{array}{c|c|}
0 & 0 \\
\hline 0 & \pi
\end{array}\right.\right)=0
$$

β for nearby $\mathrm{C}=\mathrm{C}$ is nonzero．Others are zero．
All overlap integrals are $S=0$ ．

Example ethylene
Bonding energy is

$\left|\begin{array}{cc}\alpha-E & \beta \\ \beta & \alpha-E\end{array}\right|=0$
$2(\alpha+\beta)-2 \alpha=(2 \beta)$

$$
\alpha-\beta=\phi=\chi_{\mathrm{A}}-\chi_{\mathrm{B}}
$$

$$
\alpha+\beta \uparrow \phi=\chi_{\mathrm{A}}+\chi_{\mathrm{B}}
$$

Hückel Method for Complicated π-Electron Sytems

Number carbon atoms with π, the total is N.
Wright a $N \times N$ secular equation, with all diagonal terms $\alpha-E$.
Nondiagonal terms are β for bonded i-th and j-th carbons, and zero for non bonded carbons.
\mid determinant $\mid=0$ leads to N-th equation of E, which is solved to obtain N energy levels.
Put electrons from the bottom. (\#Electron)=(\#Carbon)

Wright the secular equation of cyclobutadiene.

The solution is
$\alpha-2 \beta=$
$\alpha \stackrel{\ddagger}{\ddagger}$
$\alpha+2 \beta \uparrow$ Bonding energy is

There is no energy gain compared with two double bonds

$$
2 \times 2 \beta=4 \beta
$$

Wright the secular equation of benzene.

The solution
Bonding energy is
$\begin{aligned} \alpha-2 \beta & = \\ \alpha-\beta & =\end{aligned}$
Compared with three doublebonds

$3 \times 2 \beta=6 \beta$, there is 2β energy gain
(delocalization energy).
$4 n+2$ membered ring delocalization aromatic $4 n \quad$ membered ring no delocalization (Hückel rule)

Energy Band (Tight-Binding Approximation)

LCAO-MO of a one-dimensional polyme
(Hückel MO of polyacetylene)

$$
\varphi=\sum_{n} c_{n} \chi_{n}
$$

The secular equation is

$$
\underbrace{\left|\begin{array}{cccc}
\alpha-E & \beta & 0 & \cdots \ldots \\
\beta & \alpha-E & \beta & \\
0 & \beta & \alpha-E & \\
\hline
\end{array}\right|}_{N \times N \text { 次 }}=0
$$

We can directly solve this, but we use another way:

$$
\phi=\sum_{n} c_{n} \chi_{n}
$$

translation by one unit cell, $\boldsymbol{r} \rightarrow \boldsymbol{r}+\boldsymbol{a}$
should not change the physics, because
it only changes the atom number.
So the electron density $\rho=\phi^{*} \phi$ does

not change. Accordingly, $c_{n+1}{ }^{*} c_{n+1}=c_{n}{ }^{*} c_{n}$,
or only the phase of c_{n} may change. Thus, we can put
$c_{n+1}=c_{n} e^{i \theta}=c_{n} e^{i k a}$, Consequently ϕ is:

$$
\begin{aligned}
\phi & =c_{0}\left[\chi_{0}+e^{i k a} \chi_{1}+e^{i 2 k a} \chi_{2}+e^{i 3 k a} \chi_{3}+e^{i 4 k a} \chi_{4}+\ldots\right] \\
& =c_{0} \sum_{n} e^{i n k a} \chi_{n}
\end{aligned}
$$

(Bloch function)
c_{0} is mere a normalization constant.

Energy of $\phi=\sum_{n} e^{i n k a} \chi_{n} \quad$ is

$$
\begin{aligned}
& E=\frac{\int_{\phi^{*} H \phi d \tau} \phi^{*} \phi d \tau}{\phi^{*} \phi d}=\frac{\int\left(\sum_{m}^{m} e^{-i m k a} \chi_{m}^{*}\right) H\left(\sum_{n} e^{i n k a} \chi_{n}\right) d \tau}{\int\left(\sum_{m}^{-i m k a} \chi_{m}^{*}\right)\left(\sum_{n} e^{i n k a} \chi_{n}\right) d \tau} \\
& =\frac{\sum_{n} \sum_{m} e^{i(n-m) k a} \int \chi_{m}^{*} H \chi_{n} d \tau}{\sum_{m} \sum_{m} e^{i(n-m) k a} \int \chi_{m}^{*} \chi_{n} d \tau} \\
& =\frac{N\left(e^{i k a} \beta+\alpha+e^{-i k a} \beta\right)}{N} \\
& n \\
& m=n-1 \quad n \quad n+1 \\
& E=\alpha+2 \beta \cos k a \\
& \cos k a=\frac{e^{i k a}+e^{-i k a}}{2}
\end{aligned}
$$

(4) Make a ring.
(Otherwise, "edge state"
appears.)
When the total atoms are N, N-the atom $=0$-th atom, so $e^{i N k a}=1 \rightarrow N k a=2 \pi n \quad(n:$ integer $)-k=\left(\quad \begin{array}{l}\text { Periodical } \\ \text { boundary condition }\end{array}\right.$

$E=\alpha+2 \beta \cos k a$

$$
\text { (5) } \begin{aligned}
\phi & =\sum_{n} e^{\text {inka }} \chi_{n} & \\
k & =0 \text { leads to } & \phi=\chi_{0}+\chi_{1}+\chi_{2}+\chi_{3}+\ldots \\
k & =\pi / a \text { leads to } & \phi=[
\end{aligned}
$$

$\alpha+2 \beta$
The state next to $k=0$ has extra $e^{i \frac{2}{N}}$

All intervals have nodes.
\rightarrow Completely antibonding
the phase shifts by 2π. So the whole solid has only one node.
(6) Total number of levels

$$
\begin{aligned}
& \frac{2 \times \frac{\pi}{a}}{\frac{2 \pi}{N a}}=\left[\begin{array}{l}
N \\
\sim
\end{array}\right] \text { level interval }-\pi / a \text { to } \pi / a \\
& N \text { atoms } \rightarrow N \text { energy levels }
\end{aligned}
$$

(7) For N electrons

$$
2 \frac{2 k_{\mathrm{F}}}{\frac{2 \pi}{N a}}=N \rightarrow k_{\mathrm{F}}=()
$$

for half-filled.

Polyacetylene without bond alternation
(9) For $N=6$

Similarly, we can calculate Hückel molecular orbitals for N-carbon rings.

Excise Hückel Molecular Orbital of Cyclopentadienyl
Cyclopentadienyl anion (right) is pentagon
and has delocalized negative charge.
Calculate the energy levels from the

equation of the tight-binding band, $E=\alpha+2 \beta \cos k a$.
(1) When $N=5, k$ takes the values of $0, ~ \pm \mathrm{A}, ~ \pm \mathrm{B}$. Show A and B
(2) Obtain the energy levels.

Use $\cos (2 \pi / 5)=\cos 72^{\circ}=0.309, ~ \cos (4 \pi / 5)=\cos 144^{\circ}=-0.809$.
(3) Calculate energies of the anion, the radical and the cation.

Free electron approximation

(1) Simple free electron approximation derived from the first principle of quantum mechanics.
(2) Electrons in metals, particularly the energy and momentum distribution, are investigated starting from a large number of free electrons.
(3) Distribution of electrons at finite temperatures are discussed in view of the Fermi statistics:
statistical mechanics.

Free electron \square

Wave number $k=2 \pi / \lambda$ is inverse of the wavelength.
The number of waves in unit $\times 2 \pi$ length.
$E=\frac{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}}{2 m}+V$ in three dimension.
Schrödinger equation is,
$\uparrow \quad\left[-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)+V\right] \phi=E \phi$
Eigenfunction (solution) for $V=0$ is $\phi(x, y, z)=e^{i\left(k_{x} x+k_{y} y+k_{z} z\right)}$
Eignevalue (energy) is $E=\square)$

We cannot depict k_{z} at the same time.

Instead of an infinite space, consider a box with a finite length L, and the $x=L$ edge is connected to $x=0$.
\rightarrow (Otherwise, the edge generates a
"surface" state.)
$\phi(x+L, y, z)=\phi(x, y, z)$

$$
e^{i k_{x} L}=1 \rightarrow k_{x} L=2 \pi n \rightarrow k_{x}=\int
$$

$$
\text { (} n: \text { integer })
$$

Similarly for y, z,
$k_{x}=\frac{2 \pi}{L} n_{x} \quad k_{y}=\frac{2 \pi}{L} n_{y} \quad k_{z}=\frac{2 \pi}{L} n_{z}$
(Consider a cube with L edges.)

Periodical boundary condition

Fill N electrons according to the Pauli's exclusion principle.
Starting from the origin with the minimum energy, to the inside of a sphere with radius $k=\sqrt{ } k_{x}{ }^{2}+k_{y}{ }^{2}+k_{y}{ }^{2}$

Volume of a sphere with radius k is

Interval of states (3D)
One energy level has two electrons
Electron with the highest energy
(Fermi energy) is
$k_{\mathrm{F}}{ }^{2}=k_{x}{ }^{2}+k_{y}{ }^{2}+k_{y}^{2}$

is solved as for N to give,

$$
N=\frac{V}{3 \pi^{2}} \times[
$$

Differentiate as for E, and the number of energy levels per unit energy (density of states or states density) is
 of levels in between E and $E+d E$.

Another derivation of states density

$d N$ is the number of states in between E and $E+d E$ Surface of the sphere

$$
2 \frac{4 \pi k^{2} d k}{\left(\frac{2 \pi}{L}\right)^{3}}=d N
$$

$$
E=\frac{\hbar^{2} k^{2}}{2 m} \text { より } d E=(\square)
$$

$$
\begin{array}{r}
D(E)=\frac{d N}{d E}=2 \frac{4 \pi k^{2}}{\left(\frac{2 \pi}{L}\right)^{3}} \frac{1}{\frac{\hbar^{2} k}{m} d k}=\frac{V}{2 \pi^{2}} \frac{2 m}{\hbar^{2}} k=\frac{V}{2 \pi^{2}}\left(\frac{2 m}{\hbar}\right)^{\frac{3}{2}} E^{\frac{1}{2}} \\
k=\left(\frac{2 m E}{\hbar^{2}}\right)^{\frac{1}{2}} \quad \text { The same } \quad \text { conclusion }
\end{array}
$$

Two-dimensional metal
${ }_{k z} E=\frac{h^{2}}{2 m}\left(k_{x}^{2}+k_{y}^{2}\right)=$ const. leads to $k_{x}^{2}+k_{y}^{2}=k_{\mathrm{F}}=\mathrm{const}$.

Occupied Fermi surface $=$ cylinder
Area of the circle
$2 \frac{\pi k^{2}}{\left(\frac{2 \pi}{L}\right)^{2}}=N \longrightarrow N=\frac{L^{2}}{2 \pi} k^{2}=\left(\square D(E)=\frac{d N}{d E}=(\square)\right.$

Fermi statistics: only one electron can occupy a state.

N_{i} electrons are in the C_{i} states with energy E.
We cannot distinguish N_{i} electrons, so that the statistical weight is the number to choose N_{i} from C_{i} :

$$
W_{i}=\frac{C_{i}!}{N_{i}!\left(C_{i}-N_{i}\right)!}
$$

The definition of entropy in statistical mechanics is

$$
S=k_{\mathrm{B}} \ln W=k_{\mathrm{B}} \ln \prod_{i} W_{i}=k_{\mathrm{B}} \sum_{i} \ln W_{i}=k_{\mathrm{B}} \sum_{i} \ln \frac{C_{i}!}{N_{i}!\left(C_{i}-N_{i}\right)!}
$$

$$
\begin{aligned}
&=k_{\mathrm{B}} \sum_{\mathrm{i}}\left(C_{i} \ln C_{i}-N_{i} \ln N_{i}-\left(C_{i}-N_{i}\right) \ln \left(C_{i}-N_{i}\right)\right) \\
& \text { Stirling' equation } \ln N!=N \ln N-N
\end{aligned}
$$

The realized distribution of N_{i} minimizes the Gibbs free energy

$$
F=E-T S-\mu N \quad \text { where } E=\sum N_{\mathrm{i}} E_{\mathrm{i}}, ~ N=\sum N_{\mathrm{i}} .
$$

$f(E)$

50000 K for metals $\longrightarrow \underset{\mathrm{F}}{E_{\mathrm{F}}}$
When $T \neq 0, f(E)$ changes continuously from 1 to 0 with the width of $\mathrm{k}_{\mathrm{B}} T$.

Fermi-Dirac distribution When $T=0$:

$$
\begin{array}{ll}
E<\mu & f(E)=\frac{1}{e^{-\infty}+1}=[\quad \\
E>\mu & f(E)=\frac{1}{e^{+\infty}+1}=(\quad)
\end{array}
$$

$$
E_{\mathrm{F}}=\mu: \text { chemical potential }
$$

The real electron number is $D(E) \times f(E)$

Internal energy of metal electrons

$$
U(T)=\int_{0}^{\infty}\left(E-E_{\mathrm{F}}\right) D(E) f(E) d E
$$

Specific heat \quad Measured from $E_{\mathrm{F}}=0$.

$$
C_{V}=\frac{\partial U}{\partial T}=\int_{0}^{\infty}\left(E-E_{\mathrm{F}}\right) D(E) \frac{\partial f(E)}{\partial T} d E
$$

where $f\left(E_{i}\right)=\frac{1}{e^{\frac{E_{i}-\mu}{k_{\mathrm{B}} T}}+1}=\frac{1}{e^{x}+1} \quad x=\frac{E-\mu}{k_{\mathrm{B}} T} \quad$ gives
$\frac{\partial}{\partial T}=$
$\int d x=\frac{d E}{k_{\mathrm{B}} T}$
$\frac{\partial f(E)}{\partial T}$ is nonzero only near E_{F}.
so that approximated to be
$D(E) \sim D\left(E_{\mathrm{F}}\right)$.
$f(E){ }_{0}^{1} \underbrace{E_{\mathrm{F}}}$

$$
\begin{aligned}
& C_{V}=D\left(E_{\mathrm{F}}\right) \int_{0}^{\infty}\left(E-E_{\mathrm{F}}\right) \frac{\partial f(E)}{\partial T} d E \\
&=D\left(E_{\mathrm{F}}\right) \int_{0}^{\infty}\left(k_{\mathrm{B}} T x\right) \frac{x}{T} \frac{e^{x}}{\left(e^{x}+1\right)^{2}} k_{\mathrm{B}} T d x \\
&=k_{\mathrm{B}}^{2} T D\left(E_{\mathrm{F}}\right) \int_{V}^{\infty} \lim _{x^{2} \frac{e^{x}}{\left(e^{x}+1\right)^{2}} d x} \pi^{2 / 3} \text { from table of integrals } \\
&=\left(C_{\mathrm{v}}=\gamma T\right. \\
& \text { Specific heat of metal electron }
\end{aligned}
$$

or using $\quad D\left(E_{\mathrm{F}}\right)=\frac{3}{2} \frac{N}{E_{\mathrm{F}}}=\frac{3}{2} \frac{N}{k_{\mathrm{B}} T_{\mathrm{F}}} T_{\mathrm{F}}$: Fermi temperature

$$
C_{v}=\frac{\pi^{2}}{3} \frac{3}{2} \frac{N}{k_{\mathrm{B}} T_{\mathrm{F}}} k_{\mathrm{B}}^{2} T=\frac{\pi^{2}}{2} N k_{\mathrm{B}} \frac{T}{T_{\mathrm{F}}}=\frac{\pi^{2}}{2} n R \frac{T}{T_{\mathrm{F}}}
$$

Gas constant

If free electron is an ideal gas, according to the Dulong-Petit theorem, the specific heat is $C_{\mathrm{v}}=3 R$. However, it is less than
$\uparrow \frac{T}{T_{\mathrm{F}}} \approx \frac{300 \mathrm{~K}}{50000 \mathrm{~K}} \approx 10^{-2}$
\square Owing to the Fermi distribution, only $k_{\mathrm{B}} T$ electrons near E_{F} are excited, and contribute to the specific heat.Metal electrons are "Fermi" particles!
Only phonons
Fermi gas cf. Classical gas
At low temperatures $(<50 \mathrm{~K})$, the lattice vibration (photon) decays as $C_{\mathrm{v}} \propto T^{3}$ so that

$$
\begin{aligned}
& C_{\mathrm{v}}=\gamma T+\beta T^{3} \\
& \text { free electron phonon }
\end{aligned} \frac{C_{v}}{T}=\gamma+\beta T^{2}
$$

Experimental estimation of $\gamma \rightarrow D\left(E_{\mathrm{F}}\right)$ from the low-temperature $(<4 \mathrm{~K})$ specific heat. γ
$C_{\mathrm{v}} / T \uparrow$

Bose-Einstein statistics

Insert N_{i} particles in C_{i} levels, allowing any particles in the same level.

The number to arrange N_{i} particles and $C_{i}-1$ partitions.

$$
W_{i}=\frac{\left(C_{i}+N_{i}-1\right)!}{N_{i}!\left(C_{i}-1\right)!}
$$

$$
C_{\mathrm{i}}+N_{\mathrm{i}}-1
$$

$C_{\mathrm{i}}-1 \rightarrow C_{\mathrm{i}}$ gives

$$
\ln W_{i}=\left(C_{i}+N_{i}\right) \ln \left(C_{i}+N_{i}\right)-N_{i} \ln N_{i}-C_{i} \ln C_{i}
$$

Put this in $F=E-T S-\mu N$, and differentiation as for N_{i} is put zero to

$$
\frac{\partial F}{\partial N_{i}}=\left[\quad \begin{array}{l}
\frac{C_{i}+N_{i}}{N_{i}}=e^{\frac{E_{i}-\mu}{k_{\mathrm{B}} T}}
\end{array}\right.
$$

$$
f\left(E_{i}\right)=\frac{N_{i}}{C_{i}}=
$$

$$
\begin{array}{lll}
T \rightarrow 0 & & \\
& E_{\mathrm{i}}-\mu>0 & e^{+\infty} \rightarrow+\infty \\
E_{\mathrm{i}}-\mu=0 & f(E) \rightarrow 0 \\
e^{0} \rightarrow 1 & f(E) \rightarrow+\infty
\end{array}
$$

$f(E)$
All particles go to the lowest level.

$$
E_{\mathrm{i}}-\mu \rightarrow \hbar \omega \text { gives } \quad f\left(E_{i}\right)=\frac{1}{e^{\frac{h \omega}{k_{\mathrm{B}} T}}-1}
$$

Planck distribution

Phonon (lattice vibration) is Bose-Einstein particle.
Photon (light) is the same \rightarrow black body

$$
f\left(E_{i}\right)=\frac{1}{e^{\frac{E_{i}-\mu}{k_{\mathrm{B}} T}} \pm 1}\left\{\begin{array}{l}
+(\\
-(
\end{array}\right.
$$

Quantum statistics
$E-\mu \gg k_{\mathrm{B}} T$ leads to $e^{\text {large } \gg 1} \quad f\left(E_{i}\right)=e^{-\frac{E_{i}-\mu}{k_{\mathrm{B}} T}}$
Boltzmann (classical) distribution

Each i-th state has n_{i} particles, with the total $N=\sum n_{\mathrm{i}}$ particles.

The statistical weight is
n_{1}

$$
W=\frac{N!}{n_{1}!n_{2}!n_{3}!\cdots}
$$

$\ln N!=N \ln N-N$
Stirling's equation
so

$$
\ln W=\ln \frac{N!}{n_{1}!n_{2}!n_{3}!\cdots}=N \ln N-\sum_{i} n_{i} \ln n_{i}
$$

Put this in $F=E-T S-\mu N \quad\left(S=k_{\mathrm{B}} \ln W\right)$

$$
F=\sum_{i} E_{i} n_{i}-k_{\mathrm{B}} T\left(N \ln N-\sum_{i} n_{i} \ln n_{i}\right)-\mu \sum_{i} n_{i}
$$

Differentiation as for n_{i} is zero to give,

Everything approaches to Boltzmann at $E_{\mathrm{i}^{-}} \mu \gg k_{\mathrm{B}} T$.

One-dimensional metal

$$
E=\frac{\hbar^{2} k_{x}^{2}}{2 m}=\text { const. leads to } k_{x}=k_{\mathrm{F}}=\text { const. }
$$

(No momentum for k_{y}, k_{z}

Unoccupied
Fermi surface consists of a pair of planes.
$n=6 \quad E=\alpha+2 \beta \cos k a$
$\underbrace{E+}_{0}$

$N=4 n$ uses nonbonding level

\rightarrow No stabilization
$N=4 n+2$ does not have nonbonding \rightarrow stabilization \rightarrow Hückel role
$n=5$

$n=7$

6π

Above $x=0(\alpha=0)$ are antibonding

\rightarrow Always 6π system is most stable
$\rightarrow 4 n+2$ rule for electrons instead of carbon atoms

5 membered ring \rightarrow anion is $6 \pi \rightarrow$ stable anion

Azulene

Ferrocene
Inonic compound consisting of Fe^{2+} and organic anion
\rightarrow Electrochemical standard soluble in organic solvent (oxidized to Fe^{3+})

5 membered ring \rightarrow anion is 6π
\rightarrow stable anion
7 membered ring \rightarrow cation is 7π
\rightarrow stable cation
Naphtharene $\mathrm{C}_{10} \mathrm{H}_{8}$ isomer but polar!

