
Theory of Statistical Mathematics: Guidance

• Lecturer: T. Kanamori (e-mail: kanamori@c.titech.ac.jp)

http://www.kana-lab.c.titech.ac.jp/2019-statmath.html

• Course Schedule

∗ Guidance. A brief review of Probability

∗ Regression and Classification: Kernel methods

∗ Statistical Learning theory

∗ Deep Learning

• Assessment criteria and methods

∗ Evaluated by report submission
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• Reference books, course materials, etc.

∗ Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine

Learning: From Theory to Algorithms, Cambridge University Press,

2014.

∗ smoe handouts
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— Framework of Machine Learning —

Purpose of Data Analysis: extract useful information from observed data.

• In this course, mainly we learn some statistical methods for regression and

classification problems.
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Problem Setup

Input: x, Output: y.

ex. x −→ ?? −→ y

• training samples (x1, y1), . . . , (xn, yn) are observed.

• predict the output y of a new input point x.

∗ Regression: y is continuous.

∗ Classification: y is discrete finite.
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Regression

y can take a real number, i.e., y is a continuous random variable.
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Classification
The candidate of y is finite, i.e., y is a discrete random variable.

• Character Recognision:

ex.: x ∈ R64, y ∈ {0, 1, 2, . . . , 9}.
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used in reading system of handwritten zip codes.

• Image segmentation:
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Statistical Data Analysis and Probability

• Observed data is often contaminated by noise.

• Probability is useful for data analysis:

� �
model = [non-random structure] + [random noise]

� �

∗ In this course, we do not go into details of measure theory.
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— A Review of Probability: —
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• random variable(r.v.): variable whose possible values are outcomes of a

random phenomenon. Upper case characters such as X,Y are commonly

used to denote r.v.

e.g. coin flipping

• Let X be a r.v. taking the value in the sample space Ω. The definition of

the probability Pr(·) is given by the following conditions.
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Axiom of Probability:

1. For the subset A ⊂ Ω, 0 ≤ Pr(X ∈ A) ≤ 1．

2. The probability of the whole event Ω is 1, i.e.

Pr(X ∈ Ω) = 1

3. For mutually disjoint events Ai, i = 1, 2, 3, . . .,

Pr(X ∈ ∪iAi) =
∑
i

Pr(X ∈ Ai).

(mutually distjoint: Ai ∩Aj = ϕ for i ̸= j)

Ω

A1 A2

Pr(X ∈ A) is often written as Pr(A) or P (A).
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Example 1 (coin flip). Let (X,Y ) be r.v. corresponding to flipping two

coins and, define Ω = {(0, 0), (0, 1), (1, 0), (1, 1)}. For the fair coins,

Pr((X,Y ) = (x, y)) =
1

22
, (x, y) ∈ Ω,

Pr(X = 1) = Pr((X,Y ) ∈ {(1, 0), (1, 1)})

= Pr((X,Y ) = (1, 0)) + Pr((X,Y ) = (1, 1)) =
1

2
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calculation of probability

The following equations are derived from axioms.

• Pr(A) + Pr(Ac) = 1, where Ac is the complement of A, i.e.,

Ac = {x ∈ Ω |x ̸∈ A}.

• monotonicity: A ⊂ B ⊂ Ω =⇒ Pr(A) ≤ Pr(B)．
Proof: if A ⊂ B, we have B = A ∪ (B ∩Ac), i.e., mutually disjoint.

Thus, Pr(B) = Pr(A) + Pr(B ∩Ac) ≥ Pr(A).

• Addition theorem: Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B)

Pr(∪iAi) ≤
∑

iPr(Ai).
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Exercise 1.Prove Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B).
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Example: 1-dim normal distribution (Gaussian distribution),

Pr(a ≤ X ≤ b) =

∫ b

a

1√
2πσ2

e
−(x−µ)2

2σ2 dx, (Ω = R)

This is expressed as X ∼ N(µ, σ2).
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Probability Density Function (pdf)

For n random variables: X1, X2, . . . , Xn and a set A ⊂ Rn,

Probability of X = (X1, X2, . . . , Xn) ∈ A is supposed to be given by

Pr(X ∈ A) =

∫
A

p(x1, . . . , xn)dx1 · · · dxn

the function p(x1, . . . , xn) is called the (joint) probability density function.
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• (joint)probability density function:

p(x) = p(x1, . . . , xn) ≥ 0,∫
Rn

p(x)dx = 1

• marginal pdf: p1(x1) =

∫
Rn−1

p(x1, x2, . . . , xn)dx2 · · · dxn etc.

For discrete r.v., i.e., A is a countable set,

∫
A

· · · dx is replaced with
∑
x∈A

· · · .

=== 2019-4-9(Tue): up to here ===
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Expectation and Variance of r.v.

Let p(x1, . . . , xd) be the pdf of X = (X1, . . . , Xd).

• Expectation of Xi: barycenter

E[Xi] =

∫
Rd

xi p(x1, . . . , xd)dx1 · · · dxd =

∫
R
xi pi(xi)dxi ∈ R

P (X1 = 1) = 0.5, P (X1 = 2) = 0.2, P (X1 = 3) = 0.3

⇒ E[X1] = 1× 0.5 + 2× 0.2 + 3× 0.3 = 1.8

• Expectation of the d-dimensional r.v. X = (X1, . . . , Xd)
T :

E[X] = (E[X1], . . . ,E[Xd])
T ∈ Rd

∗ a, b ∈ R, E[aX + bY ] = aE[X] + bE[Y ] holds.
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• Variance of 1-dim r.v.X: it measures how far a set of (random) numbers

are spread out from their expectation.

V[X]
def
= E[(X − E[X])2] = E[X2]− E[X]2

∗ For a, b ∈ R, V[aX + b] = a2V[X] holds.

Example: X ∼ N(µ, σ2) =⇒ E[X] = µ, V[X] = σ2.
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Exercise 2. For 1-dim r.v. X, prove mina∈RE[(X − a)2] = V[X].
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independent and identically distributed (i.i.d.) r.v.

For X1, X2, . . . , Xn

• X1, . . . , Xn are independnet ⇐⇒ joint pdf is factorized as

p(x1, . . . , xn) = p1(x1)p2(x2) · · · pn(xn)

• X1, . . . , Xn are independent and identically distributed:

p(x1, . . . , xn) = q(x1)q(x2) · · · q(xn), (q = p1 = · · · = pn)
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� �
For independent r.v. X,Y , the following equations hold,

E[XY ] = E[X]E[Y ],

V[X + Y ] = V[X] + V[Y ]
� �

note:

E[X + Y ] = E[X] + E[Y ] holds even when X and Y are NOT independent.
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• When X1, . . . , Xn are i.i.d. from the probability distribution P , we write

X1, . . . , Xn ∼i.i.d. P or (X1, . . . , Xn) ∼ Pn

For example, X1, . . . , Xn ∼i.i.d. N(0, 1).

In this case, clearly we have

E[X1] = · · · = E[Xn], V[X1] = · · · = V[Xn].

• When X1, . . . , Xn ∼i.i.d. P，µ = E[Xi], σ2 = V [Xi],

Y =
1

n

n∑
i=1

Xi =⇒ E[Y ] = µ, V[Y ] =
σ2

n
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Exercise 3. Suppose X1, . . . , Xn ∼i.i.d. P and µ = E[Xi], σ2 = V [Xi].

For Y =
1

n

n∑
i=1

Xi, prove the following equations hold:

E[Y ] = µ, V[Y ] =
σ2

n
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Conditional Probability & Conditional pdf

• conditional probability: the probability of Y ∈ B under the condition of

X ∈ A.
� �
Definition of the conditional probability Pr(Y ∈ B | X ∈ A):

Pr(Y ∈ B | X ∈ A) =
Pr(X ∈ A, Y ∈ B)

Pr(X ∈ A)� �
P (B|A) = P (A ∩B)/P (A).

X ∈ A

Y ∈ B
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• conditional pdf of y for given x,

p(y|x) := p(x, y)∫
p(x, y)dy

=
p(x, y)

p1(x)
. (p1(x): marginal pdf of x)

The conditional pdf satisfies ∀x, y, p(y|x) ≥ 0,

∫
p(y|x)dy = 1．

probability of Y ∈ [y, y + dy] under X ∈ [x, x+ dx]

=
Pr(X ∈ [x, x+ dx], Y ∈ [y, y + dy])

Pr(X ∈ [x, x+ dx])

≈ p(x, y)dxdy

p1(x)dx
= p(y|x)dy
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Bayes’ theorem� �

Pr(X ∈ A|Y ∈ B) =
Pr(Y ∈ B|X ∈ A)Pr(X ∈ A)

Pr(Y ∈ B)
� �
proof:

Pr(X ∈ A|Y ∈ B)Pr(Y ∈ B) = Pr(X ∈ A, Y ∈ B)

= Pr(Y ∈ B|X ∈ A)Pr(X ∈ A).

Interpretation: for the cause X and the result Y ,

• Pr(Y |X)： For the cause X, the result Y occurs.

• Pr(X|Y )： infer the cause X based on the result Y .
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Asymptotic theory: the law of large numbers

For X1, . . . , Xn ∼i.i.d . P , let E(Xi) = µ ∈ R.

• The Law of Large Numbers:

for X̄n
def
=

1

n

n∑
i=1

Xi, ∀ε > 0, lim
n→∞

Pr(|X̄n − µ| > ε) = 0

∗ for sufficiently large n, X̄n is close to µ with high probability (w.h.p.).

0 200 400 600 800

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Law of Large Numbers

n

av
er
ag
e

X1, . . . , Xn ∼i.i.d. P

P (Xi = 1) = 0.7, P (Xi = 0) = 0.3.

=⇒ 1
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i=1Xi converges to 0.7 (in probability)
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Definition� �
When

∀ε > 0, lim
n→∞

Pr(|Zn − a| > ε) = 0

holds for the sequence of r.v. {Zn}n∈N, we say,

“Zn converges to a ∈ R in probability.”

and we write Zn
p−→ a for short.� �

• From the LAN, X̄n
p−→ µ．

• [Slutsky’s theorem] For any continuous function f(z),

Zn
p−→ a =⇒ f(Zn)

p−→ f(a).
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