Theory of Statistical Mathematics: Guidance

Lecturer: T. Kanamori (e-mail: kanamori@c.titech.ac.jp)

http://www.kana-lab.c.titech.ac.jp/2019-statmath.html

Course Schedule

« Guidance. A brief review of Probability

« Regression and Classification: Kernel methods
« Statistical Learning theory

x Deep Learning

Assessment criteria and methods

« Evaluated by report submission
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Reference books, course materials, etc.

« Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine

Learning: From Theory to Algorithms, Cambridge University Press,
2014.

* smoe handouts
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— Framework of Machine Learning —

Purpose of Data Analysis: extract useful information from observed data.

In this course, mainly we learn some statistical methods for regression and

classification problems.
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Problem Setup

Input: x, Output: v.

ex. T — || —y

training samples (x1,¥41), .- ., (T, yn) are observed.

predict the output y of a new input point x.

* Regression: vy Is continuous.

« Classification: v is discrete finite.
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Regression

y can take a real number, i.e., y Is a continuous random variable.
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Classification

The candidate of y is finite, i.e., y is a discrete random variable.

Character Recognision:

ex.. ¢ € R%, yc{0,1,2,...,9}.

i.D — 0, ﬁ?%B, ij%?orQ?

used in reading system of handwritten zip codes.

Image segmentation:
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Statistical Data Analysis and Probability

Observed data is often contaminated by noise.

Probability is useful for data analysis:

E model = [non-random structure] + [random noise] J

x In this course, we do not go into details of measure theory.
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— A Review of Probability: —
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random variable(r.v.): variable whose possible values are outcomes of a

random phenomenon. Upper case characters such as X, Y are commonly

used to denote r.v.

e.g. coin flipping

Let X be a r.v. taking the value in the sample space 2. The definition of
the probability Pr(-) is given by the following conditions.
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Axiom of Probability:

1. For the subset A C 2, 0 <Pr(X € A) < 1.

2. The probability of the whole event () is 1, i.e.

Pr( X e Q) =1

3. For mutually disjoint events A;, 1 =1,2,3,...,

Pr(X € U;A;) = ZPI‘(X c A;).

(mutually distjoint: A; N A; = ¢ for i # j)

Pr(X € A) is often written as Pr(A) or P(A).
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Example 1 (coin flip). Let (X,Y) be r.v. corresponding to flipping two
coins and, define 2 = {(0,0),(0,1),(1,0),(1,1)}. For the fair coins,

Pr((X.Y) = (.9)) = 0. (2.9) €9,

Pr(X =1)=Pr((X,Y) € {(1,0),(1,1)})

= Pr((X,Y) = (1,0) + Pr((X,Y) = (1,1)) = -
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calculation of probability

The following equations are derived from axioms.

Pr(A) + Pr(A°) = 1, where A€ is the complement of A4, i.e.,
Ac={xeQlz ¢ A}l

monotonicity: A C B C ) = Pr(A4) < Pr(B).
Proof: if A C B, we have B =AU (B N A°), i.e.,, mutually disjoint.
Thus, Pr(B) = Pr(A) 4+ Pr(B N A°) > Pr(A).

Addition theorem: Pr(AU B) = Pr(A) + Pr(B) — Pr(AN B)
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Exercise 1. Prove Pr(AU B) = Pr(A) 4+ Pr(B) — Pr(AN B).
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Example: 1-dim normal distribution (Gaussian distribution),

(z—p)*

- 202 dz, (2 =R)

Pr(a <

b
<X <= [

This is expressed as X ~ N(u,0?).

normal density
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area of Ml = Pr(1 < X < 2)
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Probability Density Function (pdf)

For n random variables: X1, Xo,...,X,, and a set A C R",
Probability of X = (X1, X5,...,X,,) € A is supposed to be given by

Pr(X € A) = / p(x1, ..., Tn)dry - dxy,
A

the function p(x1,...,x,) is called the (joint) probability density function.
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(joint)probability density function: fo
p(x) =p(x1,...,25,) >0, m
p(x)dx =1 o

L e=m D R

Rn ?b,(’:(k\ t&\@é\\\ '&‘M"‘ ﬂ f= C\n,

marginal pdf: pi(z1) = / p(xi,x9,...,2,)dxs - - dx, etc.

n—1

For discrete r.v., i.e., A is a countable set, / .- - dax 1s replaced with Z cee

A xrcA

=== 2019-4-9(Tue): up to here ===
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Expectation and Variance of r.v.

Let p(x1,...,2q) be the pdf of X = (X1,..., Xy).
Expectation of X;: barycenter

E[Xz] :/Rdxz'p(xh---»Cl?d)dil?r“dﬂ?d:/R%pz'(il?i)dxi c R

P(X1=1)=05,P(X;=2)=0.2,P(X;=3)=0.3
= E[X1]=1x05+2x02+3x03=1.8

Expectation of the d-dimensional r.v. X = (Xq,..., X))’
E(X] = (E[X4],...,ELX.)T € R

x a,b € R, ElaX +bY| =aE|X] 4 bE[Y] holds.
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Variance of 1-dim r.v.X: it measures how far a set of (random) numbers

are spread out from their expectation.
V[X] = E[(X - E[X])’] = E[X?] - E[X]?

x+ For a,b € R, V[aX + b = a*V[X] holds.

Example: X ~ N(u,0?) = E[X]|=pu, V[X] =02
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Exercise 2. For 1-dim r.v. X, prove mingcr E[(X — a)?] = V[X].
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independent and identically distributed (i.i.d.) r.v.

For Xl,XQ, ce ,Xn
Xq,...,X, are independnet <= joint pdf is factorized as

p(T1, .-, ®n) = pr(z1)p2(T2) - PrlTn)

X1,...,X, are independent and identically distributed:

p(x1,...,2n) = q(1)q(2) - q(Tn), (@g=p1="-=Dpn)
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" For independent r.v. X.Y, the following equations hold,

-

E[XY

VX +Y

= E[X]E[Y],
= V[X] + V[Y]

note:

E|X + Y] =E[X] + E[Y] holds even when X and Y are NOT independent.
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When X;,..., X, are i.i.d. from the probability distribution P, we write

Xl,...,Xn ~iid. P or (Xl,,Xn)NPn

For example, X1,..., X, ~;5.4 N(0,1).

In this case, clearly we have

E[Xl] — = E[Xn]v V[Xl] — = V[Xn]
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Exercise 3. Suppose X1,..., X, ~iiq P and p = E[X;], 0* = V[X,].

1 n
ForY = — E X,;, prove the following equations hold:
n
i=1
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Conditional Probability & Conditional pdf

conditional probability: the probability of Y € B under the condition of
X e A.

Definition of the conditional probability Pr(Y € B | X € A):

Pr( X €AY eB
Pr(Ye B| X e€A) = (Pr(XEA) )

\_ j

P(B|A) = P(AN B)/P(A).
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conditional pdf of y for given z,

P, y) — p(az,y). (p1(z): marginal pdf of x)

p(ylx) ==
/ p(z,y)dy 1@

The conditional pdf satisfies ", y, p(y|z) > 0, /p(y\a:)dy = 1.

probability of Y € |y, y + dy| under X € [,z + dx]

_Pr(X e[z, z+da], Y €[y, y+dy))
o Pr(X € [x,x + dz])

p(x,y)dzdy
~ — x)d
() p(y|z)dy
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- Bayes' theorem ~

Pr(Y € B|X € A)Pr(X € A)
Pr(Y € B)

- J

Pr(X € AlY € B) =

proof:

Pr(X e AlY e B)Pr(Y e B)=Pr(X € A, Y € B)
=Pr(Y € B|[X € A)Pr(X € A).

Interpretation: for the cause X and the result Y,

Pr(Y|X) : For the cause X, the result Y occurs.
Pr(X|Y) ¢ infer the cause X based on the result Y.
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Asymptotic theory: the law of large numbers

For Xl, ce ,Xn ~id. P, let E(XZ) = U c R.

The Law of Large Numbers:

I , _
for X,, = EZX’L Ve > 0, nh_)rrgo Pr(| X, —pu| >¢)=0
i=1

+ for sufficiently large n, X, is close to p with high probability (w.h.p.).

Law of Large Numbers

Xiyeooy Xn ~iia P

M e P(X;=1)=0.7, P(X; =0)=0.3.
-

average
05 06 07 08 09 10

— %Z?Zl X; converges to 0.7 (in probability)

0 200 400 600 800
n
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~ Definition ~
When

Ve >0, lim Pr(|Z, —a|>¢)=0

n—oo

holds for the sequence of r.v. {Z, }nen, We say,

“Z, converges to a € R in probability.”

and we write Z,, 2 a for short.
\— J

From the LAN, X,, — u.

[Slutsky's theorem] For any continuous function f(z),
Zn —a = [(Zn) — f(a).
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