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The probabilistic method comprises two ideas:

* Any random variable assumes at least one value not
smaller than its expectation.

 If an object chosen randomly from the universe
satisfies a property with positive probability, there
must be an object of the universe satisfying that
property.

Theorem. For any undirected graph G(V,E) with n
vertices and m edges, there is a partition of I/ into A
and B such that the edge cut-set has m/2 edges at
least, namely [{(u,v) € E|lu € Aand v € B}| = m/2.



Proof. Consider the following experiment. Each vertex is
independently and equiprobaly assigned to A or B.

The probability that the end points of an edge (u, v) are
in different sets is 1.

By the linearity of expectation the expected number of
edges in the cutism/2.

It follows that there must a partition satisfying the
theorem.m

Consider the satisfiability problem. A set of m clauses is
given in conjunctive (sum) normal form over n variables.



We have to decide whether there is a truth assighnment
of the n variables satisfying all the clauses (POS).

There is an optimization version called MAX-SAT where
we seek for a truth assignment maximizing the number
of satisfied clauses. This problem is NP-hard.

We subsequently show that there is always a truth
assighment satisfying at least m/2 clauses. This is the
best possible universal guarantee (consider x and Xx).

Theorem: For any set of m clauses, there is a truth
assighment satisfying at least m/2 clauses.



Proof: Suppose that every variable is set to TRUE or
FALSE independently and equiprobaly.

For 1 <i<m,let Z; =1 if the clause is satisfied, and
Z; = 0 otherwise.

Due to the conjunctive form, the probability that a
clause containing k literals is not satisfied is 27% < 1/2,
or 1—2"%>1/2 that it is satisfied, implying
E[Z;] =1/2.

The expected number of satisfied clauses is therefore
Yt E[Z;] 2m/2, implying that there must be an
assignment for which >, Z; > m/2. =



An orientation of a complete graph is called
tournament.

A Hamiltonian path is an (n — 1)-arc uni-directed path.

Theorem: (Szele 1943). There is an n-vertex tournament
having at least n! /2"~ 1 Hamiltonian paths.

Proof: for each vertex pair we chose an arc v; - v; or
v; = v; with equal probability, generating a random
tournament.

Let X be count the number of Hamiltonian paths in the
tournament. X is a sum of n! indicator random variables
for the possibility that a path is Hamiltonian.



A Hamiltonian path occurs with probability 1/2"1
hence E[X] = n!/2™ 1, and there must be a graph with
at least n! /2™~ ! Hamiltonian paths. m
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Expanding Graphs

G(V,E) is called an expanding graph if thereisac > 0
such that for any S € V there is |I'(S)| > c¢|S|, where
I'(S) is the set of S’s neighbors.

A particular type of expanding graph is a bipartite multi
graph G(L, R, E) called an OR-concentrator.

It is defined by a quadruple (n,d,a,c), where
|IL| = |R| = n, such that

1.deg(v) < d Vv € L, and

2. VS € L such that |S| < an thereis [T'(S)]| > c|S]|.

In most applications it is desired to have d as small as
possible and ¢ as large as possible.
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Of particular interest are those graph where a,c and d
are constants independent of nand ¢ > 1.

These are strict requirements and it is not trivial to
construct such graphs. We rather show that such graphs
exist.

We show that a random graph chosen from a suitable
probability space has a positive probability of being
(n,d,a,c) =(n,18,1,2) OR-concentrator. (Constants
are arbitrary, other combinations are possible.)

Theorem: There is an integer ny such that for alln > n,
there is an (n, 18, 14, 2) OR-concentrator.



Proof: The proof is carried out in terms of d,c, and «,
while the constants are pinned at the end of the proof.

Consider a random G(L, R, E), where v € L choses its d
neighbors I'(v) € R independently and uniformly with
replacements, and avoid multi edges.

Let &, be the event that for S € L,|S| = s there is
IT'(S)| < c¢s, namely, an OR-concentrator does not exist.

Plan: We shall first bound Pr|e.], and then sum over all
the values of s < an. We thus obtain an upper bound
on the probability that the random G fails to be an OR-
concentrator with the parameters we seek.



Consider SE€ L, |S|=sandany T € R,|T| = cs. There

are (Z) ways to choose S and (;) ways to choose T.

There is ds = |'(S)|. The probability that I'(S) € T is
(cs/M)ITSN > (¢s/n)ds.



IT(S)| < c|S| means not
having OR connector (&;).

The number of possibilities
to choose s vertices from L

and cs fromR is (Z) (CT;)

The probability that all the ds edges emanating from
some s vertices of L fall within any cs vertices of R is

bounded by
pricd < (3) ((5) (5)”
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Substituition of the inequality (

Pr[gs] - (E)S (E)cs (E)ds _

S CS n

Usinga = 1/3 and s < an, there is

1 d—c—-1
Pr[s.] < <§) eltccd—c| <

13 The Probabilistic Method June 2015



Usingc = 2and d = 18, there is

Pr[s,] < [(%)18 (36)3r =79,

where r = (2/3)'%(3e)?, so thatr < :.

Summing overall1 < s < an = n/3 thereis

Zn/SZle Pl‘[é‘s] < 2521 re = # <1,

showing that the desired OR-concentrator exists. =
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Crossing Number

The crossing number cr(G) of a graph G is the smallest
number of edge crossings in a planar embedding of G.

In VLSI it is the number of jumpers (via) required to
layout a circuit.

For a planar graph G(V,E), |V| =n, |E| = m there is
cr(G) = 0.

Euler formula for planar graph statesn —m + f = 2.

Since a face comprises a least 3 edges, and each edge is
shared by two faces, there is

O=n-m+f—-2<n—-m/3-2.
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Since cr(G) = 0 for a planar G, for any G there is
cr(G)Z2m—-—3n+6 forn=3.

Stronger lower bound can be derived with the aid of
expectation.

Lemma: (The Crossing Lemma, proof by N. Alon). Let G
be a simple graph with m = 4n. Then

1 m3
> =t
cr(G) =2 ——-

Proof: Let G be a planar embedding of G yielding cr(G).

Let S € V be obtained by choosingv € V randomly with
probability p := 4n/m. Let H := G[S] and H = G[S].



H is a planar embedding of H imposed by G.

Let X,Y and Z be the random variables of the number of
vertices, number of edges and the number of crossings
in H, respectively.

It follows from the trivial lower bound that Z := cr(ﬁ)
>cr(H)>Y—3X+6. By linearity of expectation
thereis E|Z] = E|Y] — 3E|X].

Thereis E[X] = pn and E[Y] = p?m (an edge is defined
by its two end vertices).

Since a crossing is defined by four vertices, there is
E[Z] = p*cr(G) = p*er(G).



All in all there is
p*cr(G) = p*m — 3pn.
Dividing by p* yields

-, pm-3n n 1 m3
cr(G = = ——. N
( ) — p3  (4n/m)3 64 n2’

The Crossing Lemma is useful in combinatorial
geometry. Consider n points in the plane and lines
passing through each pair of points.

n . . .
Some of these (2) at most distinct lines might pass
through more than two points.
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Given k = 2, how many lines can pass through at least k
points?

If n is a perfect square and the point are on a \/n Xn
grid, there are 24/n + 2 lines passing through \/n points.
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Is there a configuration of n points in the plane yielding
more lines passing through at least /n points?

Theorem: (Szemerédi and Trotter 1983). Let P be a set
of n points in the plane, and let [ be the number of lines
passing through at least k4+ 1 points of P, 1<k
< 2+/n.Then | < 32n?/k3.

Proof: Form a graph G with vertex set P.

(:’s edges are the segments between consecutive points
of the [ lines. G has therefore at least kl edges and its

crossing number is at most (é)



If it happens that kl < 4n, because 1 < k < 2+/n, there
isl <4n/k < 16n%/k3 < 32n%/k3.

Otherwise kl = 4n, and the Crossing Lemma applies
(m = kl).

l) > cr(G)

It follows from the lemma that [4/2 > (2
> (k1)3/64n?, yielding again [ < 32n?/k>. =
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Properties of Almost All Graphs

Theorem: (Gilbert 1959). Let G be a random graph
whose edges have constant probability p. Almost every
such graph is connected.

Proof: Let us denote the graph by GP, having n vertices.
GP can get disconnected by vertex bipartition followed
by deletion of the two-sided edges.

Plan: We obtain an upper bound the probability g,, that
GP is disconnected, by choosing S €V and summing

the probabilities P([S, §] = (2)) over all [S, §] partitions.



Let |S| = k. There are k(n — k) possible edges in [S, §],
SO P([S, §] = (Z)) = (1 — p)*("=k)_ By considering all S,

thereisq, <1Yn_ 1( )(1 p)kn—k)

This inequality is symmetric in kK and n — k, so there is
an < SpLE () (1= p)k@io,

. (Nn : : :
There is (k) < nk. Also, since in the above summation

there is n—k>|n/2] and 1—p <1, there is
(1 —p)k=0 < (1 — p)kin/2l,
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Allin all there is g,, < Zln/ZJ[n(l — p)"/z]k.

For sufficiently large n there is n(l—p)"/2<1, SO

- k _ _n@1-p)"/?
qn < Zkzl[n(l — p)n/z] = 1iln(1?p)"/2'

We conclude that with n —» oo, there is gq,, > 0, which
means that for large enough graphs with constant edge
probability the graphs is almost surely connected. m
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Markov’s Inequality and Random Graphs

Let (2,,,P,), n =1 be a probability space, (2, is a
sample space and P,: 2, - [0,1] a probability
function satisfying Y. ,cq Bo(w) = 1.

We subsequently explore the existence of few
properties in random large graphs.

Large means |V|[G]| = n — oo, whereas the probability
p of an edge depends on n and satisfies p(n) — 0.

G, , denotes the probability space of such graphs.



Markov’s Inequality states that if X is a nonnegative
random variableandt € R,t > 0, then
E(X)

P(th)ST

Markov’s Inequality is applied to show that G € G,
almost surly has a particular property for a certain p.

It is obtained by setting X = X,, and t = 1.
Corollary: Let X,, € N be a nonnegative random variable

in a probability space (2,,,F,), n = 1. If E(X,) — 0 as
n — oo, then P(X,, =0) > 1asn — oo.



Asymptotic Behavior of Graphs

Example: We are interested in the number X of triangles
inG € Gy ,p.

X can be expressed as the sum
X=){Xs:ScV,|S| =3}

where X; is the indicator random variable for the event
A¢ that G|S] is a triangle.

X¢ = 1if S imposes a triangle and Xs = 0 otherwise. By
the expectation definition there is

E(Xs) = P(Xs =1).
There is P(45) = p3.
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By linearity of expectation, there is

E(X) = X{E(Xs) : S €V, |S| =3} = (5)p® < (pn)*.

Thus if pn - 0 as n - o, thenE(X) - 0, so P(X =1)
- 0and P(X=0) » 1.

It means that if pn —» 0 as n — oo, G will almost surly be
triangle-free. m

Consider the probability of having the independent sets
in a graph of n vertices and edge probability p, not
exceeding a certain size, which of course depends on n.
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Theorem: (Erdos 1961). The size of maximal
independent set in a random grap a(G EGn,p) IS
almost surely no larger than [2p~1 logn].

The theorem states that if the probability of an edge is
fixed, it is very difficult to find an independent set of size
that grows with n, even very slowly as log n.

Proof: Let Sc VI|G], |S|=k+ 1, k€ N. k is pinned
down later.

The probability that S is an independent set is the
probability that none of the vertex pairs has a

(k+1)
connecting edge, namely, (1 —p)* 2 /.



Let As be the event that S is an independent set and let
X be the corresponding indicator random variable.

Thereis E(Xs) =P(Xs=1) =P(4s) = (1 — p)(k;rl).

Let Z be the number of independent sets of size k + 1.
Then

Z=Y{Xs:ScV, |S|=k+1}.
By linearity of expectation there is

E(Z) = S{EXs):SCV, |S|=k+1} =
k+1
(i3 )a-mts)
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k+1

< n

theres (4 1. 1) < Gy

and 1 —p <e™P.
Substitution in E (Z) yields

nk“e_p(k;rl) (ne_pk/z)k+1

B2 s —0= k + 1)!

Let us now pin down k, supposing k = [2p~1logn].

Then k = 2p~!logn, and by exponentiation there is
nePk/2 < 1 hence

1
E(2) = g
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Since k > 2p~1logn, k grows at least as fast as logn,
hence E(Z) » 0 asn — oo,

Recall the corollary stating that if E(Z) - 0 as n — oo,
then P(Z =0) > 1asn — .

it means that (G € Gy,,)<2p llogn with
probability—> 1 as n - oo, so a(G € Gn,p) > 2p~tlogn
with probability—> 0asn — co. =
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The distance between two vertices is defined as the
edge length of the shortest path connecting them.

The diameter of a graph is the maximum of the distance
over all vertex pairs.

Theorem. If p is a constant then almost every GP has
diameter 2 (and hence connected).

Proof. Let X(GP) count the number of unordered vertex
pairs which distance is larger than 2, hence having no
common neighboring vertex.

If there are none such pairs, then GP is connected and
has diameter 2.



X(GP) is a random variable. If it would happen that
E(X) - 0 as |V| =n — oo then it follows by Markov’s
Inequality that the theorem holds.

For two vertices {vi,vj} €V let X;; be an indicator

random variable specifying that they do not share a
common neighboring vertex.

Xij =1 would happen if there is no common
neighboring vertex.

For each of the other n — 2 vertices the probability it
does not connect to either of {vi,vj} is 1 — p%. Hence

P(Xl] — 1) — (1 — pZ)n—Z.



There are (;) distinct vertex pairs. X is bounded by the

sum of the (g) random variables Xj;.

If follows from the linearity of expectation that
n _
E(X) < (5,) - p?)n2,

Since p is constant while n — oo, there is E(X) — 0.
Consequently, almost every GP has diameter 2, and is
also connected. =

This theorem is stronger than Gilbert’s theorem. While
the latter states that almost every GP is connected, this
one provides also the diameter.



Problem

A graph G is planar if and only if for any H € G, there is
H # Ksand H # K33 .

Let G|U,V] be bipartite random graph with |U| = |V|
=n, whose edges have probability p(n) (non
constant!).

Find the largest function f(n) such that if p(n)

= o[f(n)] then almost every G[U,V] is planar as n
— 00,



Proof: We should find what probability f(n) ensures
that there is almost surely no K33 < G[U, V].

Let X be the number of K33 in G[U, V].

2
There are (g) distinct subgraphs G|W,6Z], where

WcU, ZcV, and |W| = |Z]| = 3.

Let Xy, , be an indicator random variable of the event
G[W,Z] = K3 3. Thereis

E(Xwz) =P(GIW,Z] = K33) = p(n)°.



By linearity of expectation, there is
EX)=Y{EXwz):WcUZcV,|W|=|Z| =3}
= (%Y p(0)° < nop(n)°.

Thus if n®p(n)? -0 as n - o, then E(X) = 0, so
P(X=1)->0and P(X=0) - 1.
Consequently

n°fm)’=01)= f(n) =n"?3. =



