Corollary 9.3 Let «* be a minimum of a max-type function f(x) over the set @ as (16). If
fie S}L(Q) (i=1,2,...,m), then

f(@) 2 f@) + Sz —a"[3, vecQ.

Proof:
From Lemma 9.1 and Theorem 9.2, we have for V& € @),

* /’L *
f@) > flate) + e - a3
7 0
> flaat)+Sle - o = fa) + Lo - a3,
1

Lemma 9.4 Let f; € SL(Q) for (i =1,2,...,m) with g > 0 and @ be a closed convex set. Then
there is a unique solution * for the problem (17).

Proof:
Left for exercise. 1

Definition 9.5 Let f; € C1(Q) (i = 1,2,...,m), Q a closed convex set, Z € Q, and v > 0. Denote
by

. — . . Tilar 2112
xp(T;y) - arg min f(@;y) + 2Hy z|3
gr(®;y) = (& —zp(Z;7))

We call g;(z;7v) the gradient mapping of maxz-type function f on Q. Observe that due to
Lemma 9.4, z(Z;) exists and it is uniquely defined.

Theorem 9.6 Let f; € S;lL(Q) (1=1,2,...,m),y> L, v >0, Q a closed convex set, and & € Q.
Then

_ _ _ 1 _ W _
f(@) = flep(z;7) + (g (@7), 2 — T) + 5”9}”("135'7)“% +5lle—23 veeQ.
Proof:  Let us use the following notation: x; := x(Z;v) and gy := g;(Z;7).

From Lemma 9.1 and Corollary 9.3 (taking f(x) in there as f(z; a:) —|— I|l@ — z||3), we have
YV € Q,

f@) - Ele-zl} > f@a)
= f@a)+ e -zl - Lz -2l
> f@@y) + *Wf—ﬂb+5w—wﬂﬁ—$@—@%
= f(mxy) + —Ha:f a:H%—i—%(fc—azf,Qw—wf—:f:}
= f(z;xyp)+ —Ha:f—:cHg+%<c‘c—wf,2(w—iz)+:ﬁ—wf>
— f(@iap) + ww—muﬂw, - @)+ 5-logl}
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where the last inequality is due to the fact that v > L. 1

Now, we are ready to define our estimated sequence. Assume that f; € S;lL(Q) (1=1,2,...,m)
possible with g = 0 (which means that f; € .7-'2’1(62)), xg € @, and yg > 0. Define

do@) = f(@o)+ 4l — ol
buaa(a) = (1= an)on(e) +au | s D) + 57 oy DI + gy L.~ 92
+Llle —yil)

for the sequences {ay}32, and {y;}72, which will be defined later.
Similarly to the previous subsection, we can prove that {¢;(x)}72, can be written in the form

* Yk
() = ¢, + ?Hm — |3

for ¢8 = f(wo), Vg = Io:

Yer1 = (1 — )y + app
1
Vi1 = ——[(1 — op) vk + appyy — Oékgf(yks L)},
VEk+1
ir = (- aw)op+ anflaruii D) + (5 - 5 ) lgslw DI
= — Qg k ; Paraline ;
k+1 k Yk oL 2mimt gr\Yg 2

(1 — ap)y (1
+ S (B — wnl3 + g (s L), ok — ) )
Ve+1 2

Now, ¢§ > f(xo). Assuming that ¢; > f(xx),

Qay ozi

G = (I—aw)f(me) +owf(@s(yp; L) + | o7 — g (ys; L)1
2L 2941

ap(l — o«
N k( k)’Yk<
VEk+1

gf(yk; L), vk — yg)

2
1 aj,

Fartwma ) + (57 - 5o ) st D2

v

(1 — o)

K . 2
T LIS

OpYE
(1 ap) <gf<yk; L), % (4 gy 4 g — yk> ;
Yk+1

where the last inequality follows from Theorem 9.6.
Therefore, if we choose

1 = Tp(yp L),
Laj = (1= o)y + arp,
")/k-+1 = LO(%,
1
Y, = —— (Vg + Ver1%k),
i Vi + Oékﬂ( +1%%)

we obtain ¢; ;> f(xky1) as desired.
Hereafter, we assume that L > p to exclude the trivial case L = p with finished in one iteration.
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Constant Step Scheme for the Optimal Gradient Method for the Min-Max
Problem
Step 0: Choose xg € Q, ag € (0,1) such that ao(lafiféo_“) >0, u< ao(f‘j'igo_m <L,
set yo := xo, k :=0.
Step 1: Compute f;(y;) and Vf;(y,) (i =1,2,...,m).

Step 2: Set Ty :=xf(yy; L) :=argmin | max fi(yg) +(Vfi(yr), T —yy)
Treq |i=1,2,....m

L—
+ ol ) g — g 3]
Step 3: Compute aj41 € (0,1) from the equation aiﬂ =(1- ak+1)ai + Lo
) o o(l—ay)
Step 4: Set 8 := o3 rangs

Step 5: Set y;.1 = xpt1 + Be(Try1 — ), k:=k + 1 and go to Step 1.

The rate of converge of this method is exactly the same as Theorem 8.6 for vy := ap(apL —
1)/ (1 — ag), but we need to solve a convex program in Step 2 for each iteration, and it can turn
the method computationally expensive.

9.1 Exercises

1. Prove Lemma 9.4.
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