If we consider very large problems where we can not afford n number of iterations, the above
theorem says that:

e The function value can be expected to decrease fast.

e The convergence to the optimal solution &* can be arbitrarily slow.

6.2 Lower Complexity Bound for the class SZOLI (0%)

Gradient Based Method: Iterative method M generated by a sequence such that

x € xo + span{V f(xo), Vf(x1),..., Vf(xr-1)}, k>1.

Let us define
= {{xz}fil

Consider the problem class as follows

o
Zx§<oo}.
=1

Model: min f(x)
xel?

fessie?
Oracle: Only function and gradient values are available

Approximate solution: | Find & € R™ such that fg:c) _*f(gw )<e
|z — x5 <e

00,1

Theorem 6.2 For any o € /2, there exists a function f € S L (¢%) such that for any gradient
based method of type M, we have

2k
f@) - f@) > ’;(%’;:) o — =3

where z* is the minimum of f(x).

Proof:

This type of methods are invariant with respect to a simultaneous shift of all objects in the
space of variables. Therefore, we can assume that xo = {0}5°;.

Consider the following quadratic function

fuslw) = HEEZD {m% 3o~ o) - 2[:::]1} M
=1

Then

L/p—1 L/pu—1
Vi) = ("R A r) e - MRS,
where A is the same tridiagonal matrix defined in Theorem 6.1, but with infinite dimension and
e € £? is a vector where only the first element is one.
After some calculations, we can show that uI < V2f(x) < LI and therefore, f(x) € SZOLl (%),
due to Corollary 5.22.
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The minimal optimal solution of this function is:

i
[ VE/p—1 ,
[x*]; == q' = , 1=1,2,...
VL/p+1
Then
e 00 ' q2
oo~ = 3ot = Y oa = s
i=1 i=1
Now, since V f, 1 (z0) = —Wel, and A is a tridiagonal matrix, [xg]; =0 fori = k+1,k+
2,...,and
2 - 2 - 2i g*F ) 2k 2
|zp — ™[5 > Z [x"]; = Z q" = qu = q”"[|xo — 2|3
i=k-+1 i=k+1
Finally, the first inequality follows from Corollary 5.17. 1

7 The Steepest Descent Method for Differentiable Convex and
Differentiable Strongly Convex Functions with Lipschitz Con-
tinuous Gradients

Let us consider the steepest descent method with constant step h.

Theorem 7.1 Let f € F 1L71(R"), and 0 < h < % The steepest descent method with constant step
generates a sequence which converges as follows:

x.) — f(x* 2(f(xo) = f(&")) |20 — 17*”%
flew) = I < S —av |3 + k@ — L) (f(@o) - f@)"

Proof:
Denote 71, = ||xr — *||2. Then
i = ek =@ =V ()3
= 1 = 2h(V f(ar), xp — ) + 12|V f ()3
= i = 2h(V () = V@), xp — ) + 12|V f ()3

den (3 n) Vsl

IN

where the last inequality follows from Theorem 5.13.
Therefore, since 0 < h < %, a1 <1 < -+ < Tp.
Now

f@r1) < flor) + (VF(@k), Boy1 — @) + §H$k+1 — I3
= @)~ HIVF@)B+ 2]~ AV F)B (10)
= )~ VE @) < ), (1)

where w = h(1 — 5h). Denoting by Ay, = f(zy) — f(x*), from the convexity of f(z), Theorem 5.7,
and the Cauchy-Schwarz inequality,

A = flar) = f(27) <(V (@), zp —2") < |V F(@r)l2re < IV F ()20 (12)
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Combining (11) and (12),

w
A1 < Ag — 7Ai-
o
Thus dividing by AgAgyq,

Lol et 1w
App1 — A 13Dy T Ay 13

since AAk-]T- -2 1. Summing up these inequalities we get

1 1 w
> — 2(l<:+1)
o

Apy1 A0

1
To obtain the optimal step size, it is sufficient to find the maximum of the function w := w(h) =

h(1 — Lh) which is h* := 1/L.
Corollary 7.2 If f € F IL’I(R”), the steepest descent method with constant step h = 1/L yields

k|2
flaw) — o) < 22—l

That is, {f(xr)}72, converges R-sublinearly to f(z*).

Proof:
Left for exercise. I

Theorem 7.3 Let f € Sl ! L(R"),and 0 < h < + —. The steepest descent method with constant

step generates a sequence Whlch converges as follows

. 2hpL \ "
ok — I3 < (1—“) lwo — 2113

pu+ L
R R (L e
Ifh—/H_L,then
e e < 5 () ey e
el < (FE) oo

That is, {x1}72, and {f(xx)};2, converges R-linearly to * and f(z*), respectively.
Proof:
Denote 7 = ||@p — x*||2. Then
i = llex =" = AV fz)]3
= i = 20V f(p), 2 — ") + B2V f (@) 3
= 7 = 20{V f(z1) — Vf( ),k —x*) + B2V ()3

L
< poon (e V@) - VIR + VAl

2hul\ o 2
= ([1-——— +h|lh——||V
(1- 20 ) 2+ ( ) IV H@lE
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from Theorems 5.13 and 5.23, and it proves the first two inequalities.

Now, for h = 2/(L + p) and again from Theorem 5.13,

Flmr) = f(&) — (V") 2 — 2") < §||wk - z*|3
L(L/p—1\* ,
2<L/,u+1> To-

Theorem 7.4 (Yuan 2010) ? In the special case of a strongly convex quadratic function f(x) =
3(Az,x) + (a, ) + a with \{(A) = L > A, (A) = > 0, we can obtain

k
L/ip—1
L/p+ /435

[E7 R A P [0 — 272

for the steepest descent method with “exact line search”.

7.1

8

e Note that the previous result for the steepest descent method, Theorem 4.18, was only a local

result. Theorems 7.1 and 7.3 guarantee that the steepest descent method converges for any
starting point g € R" (due to convexity).

Comparing the rate of convergence of the steepest descent method for the classes F i’l(R”)
and SllllL(R") (Theorems 7.1, Corollary 7.2, and 7.3, respectively) with their lower complexity
bounds (Theorems 6.1 and 6.2, respectively), we possible have a huge gap.

Exercises

. Prove Corollary 7.2.

. Consider a sequence {f}32, which converges to zero.

The sequence is said to converge Q)-sublinearly if

‘5]&1 1
2

lim sup
k—o0

B

A zero converging sequence {3}, is said to converge R-sublinearly if it is dominated by a
Q-sublinearly converging sequence. That is, if there is a Q-sublinearly converging sequence
{8k}, such that 0 < |Bi| < By

(a) Give an example of a Q-sublinear converging sequence which is not Q-linear converging
sequence.

(b) Give an example of a R-sublinear converging sequence which is not R-linear converging
sequence.

The Optimal Gradient Method (First-Order Method, Acceler-
ated Gradient Method, Fast Gradient Method)

This algorithm was proposed for the first time by Nesterov® in 1983. In [Nesterov03], he gives a
reinterpretation of the algorithm and provides another justification of it which attains the same
complexity bound of the original article.

2Y .-X. Yuan, “A short note on the Q-linear convergence of the steepest descent method”, Mathematical Program-
ming 123 (2010), pp. 339-343.

3Y. Nesterov, “A method for solving the convex programming problem with convergence rate o(1/ kz)ﬂ’ Dokl.
Akad. Nauk SSSR 269 (1983), pp. 543-547.
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