5.3 Differentiable Convex Functions with Lipschitz Continuous Gradients

Corollary 5.12 Let f be a two times continuously differentiable function. f € f%l(R") if and
only if O < V2f(x) < LI, Vx cR"

Proof:
Left for exercise. ]

Theorem 5.13 Let f be a continuously differentiable function on R", &,y € R", and « € [0, 1].
Then the following conditions are equivalent:

1. feF (RY).

2. 0< f(y) — flx) — (VF(z),y — =) < §lle -yl
3. f(®) +(Vf(@),y—x)+ 5| VF(@) = VI3 < f(y)
L 0< HVF@) - Vi3 < (Vi) - Vi) -y).

5.0 <(Vf(x) - Vf(y),z—y) <Lz -yl
6. flaz+ (1 —a)y) + L2V f(z) — VI3 < af(@) + (1 —a)f(y).

7. 0<af(x) +(1-a)f(y) - flax + (1 - a)y) < a(l - a)zllz -yl

Proof:
It follows from Lemmas 5.7 and 3.6.

Fix € R", and consider the function ¢(y) = f(y) — (Vf(x),y). Clearly ¢(y) satisfies

2. Also, y* = « is a minimal solution. Therefore from 2,

2
o@) = o) <o (v- VoW <o)+ +{Vo(y). ~1 Vo)

1
5 HLV¢(?J)

2
1
= 6)+ 5 VO3~ TIVew)IE = o(y) - - IV
Since Vo (y) = Vf(y) — V f(x), finally we have

fx) = (Vf(z),z) < f(y) —(Vf(z)y) - %IIVf(y) - V@)l

3=4| Adding two copies of 3 with & and y interchanged, we obtain 4.
4=-1| Applying the Cauchy-Schwarz inequality to 4, we obtain ||V f(x)—V f(y)|l2 < L||x—y||2-
Also from Theorem 5.7, f(x) is convex.
Adding two copies of 2 with & and y interchanged, we obtain 5.
5=2

1
fy) - (@) — (Vi@)y—z) = /0 (VF(@+7(y — @) — VF@),y - z)dr

IN

! 2 L 2
| rtly==lBir = Sy - =l

The non-negativity follows from Theorem 5.7.

Denote x,, = ax + (1 — a)y. From 3,
f@) 2 f(@a) + (V@) (L= )@ — ) + 5|V F @) - V)l
F) > Jwa)+ (Ve aly — @) + 5| V)~ Va3
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Multiplying the first inequality by «, the second by 1 — «, and summing up, we have

1—

o
o7 V@) = VF(@a)l.

e

af (@) + (1= a)f(y) > f(@a) + 57 [ VF(@) = V f ()3 +
Finally, using the inequality

alb—d|f + (1 - a)e —d|3 > a(l —a)llb - |3

we have the result.

—a(l-a)[[b—cll3 > —a(l —a)(|b—d2 + [[c — d||)3
Therefore

alb—dll5 + (1 - a)|lc—d|l3 — a(l —a)(|b—dl2 + [lc — d]]2)?
= (allb—df2 — (1 —a)c—d[2)* >0

Dividing both sides by 1 — a and tending « to 1, we obtain 3.

m From 2,

f@) < Flwa)+ (Vi@a), (1 - 0)@ —9)) + 5 (1~ )z — g3

) < f@a)+ (Vi@a).aly @)+ 5oz — g3

Multiplying the first inequality by «, the second by 1 — «, and summing up, we have

af(@) + (1 - a)f(y) < f(@a) + 5 (01— a) + (1 - a)a?) = — g3

The non-negativity follows from Theorem 5.7.
Dividing both sides by 1 — « and tending « to 1, we obtain 2. The non-negativity follows
from Theorem 5.7. ]

5.4 Differentiable Strongly Convex Functions

Definition 5.14 A continuously differentiable function f(x) is called strongly convexr on R™ (no-
tation f € SL(]R")) if there exists a constant g > 0 such that

1
The constant p is called the convezity parameter of the function f.

Example 5.15 The following functions are some examples of strongly convex functions:
L f(z) = 3llz|5.
2. f(®) =a+(a,z)+ 3(Az,x), for A= pI, p>0.
3. fele-SHIOANbutlal £ SHR): |z| € S1({0}) (Function |z| is strongly convex only at 0 € R.
4. A sum of a convex and a strongly convex functions.

5. LASSO (Least Absolute Shrinkage and Selection Operator) with rank(A) = n: ||Ax — b||3 +
A|z][; and A > 0.

6. The fy-regularized logistic regression function f(x) = log(1 + exp(—(a,x)))+\|z[/3, A > 0,
which is a sum of a convex function and a strongly convex function.
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