5.3 Differentiable Convex Functions with Lipschitz Continuous Gradients

Corollary 5.12 Let f be a two times continuously differentiable function. $f \in \mathcal{F}_L^{2,1}(\mathbb{R}^n)$ if and only if $O \leq \nabla^2 f(x) \leq LI$, $\forall x \in \mathbb{R}^n$.

Proof:

Left for exercise.

Theorem 5.13 Let f be a continuously differentiable function on \mathbb{R}^n , $x, y \in \mathbb{R}^n$, and $\alpha \in [0, 1]$. Then the following conditions are equivalent:

1.
$$f \in \mathcal{F}_L^{1,1}(\mathbb{R}^n)$$
.

2.
$$0 \le f(\boldsymbol{y}) - f(\boldsymbol{x}) - \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle \le \frac{L}{2} \|\boldsymbol{x} - \boldsymbol{y}\|_2^2$$

3.
$$f(\boldsymbol{x}) + \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle + \frac{1}{2L} \|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y})\|_2^2 \le f(\boldsymbol{y}).$$

4.
$$0 \le \frac{1}{L} \|\nabla f(x) - \nabla f(y)\|_2^2 \le \langle \nabla f(x) - \nabla f(y), x - y \rangle$$
.

5.
$$0 \le \langle \nabla f(x) - \nabla f(y), x - y \rangle \le L ||x - y||_2^2$$

6.
$$f(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}) + \frac{\alpha(1 - \alpha)}{2L} \|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y})\|_2^2 \le \alpha f(\boldsymbol{x}) + (1 - \alpha)f(\boldsymbol{y}).$$

7.
$$0 \le \alpha f(\boldsymbol{x}) + (1 - \alpha)f(\boldsymbol{y}) - f(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}) \le \alpha (1 - \alpha)\frac{L}{2} \|\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2}$$
.

Proof:

 $1\Rightarrow 2$ It follows from Lemmas 5.7 and 3.6.

 $2\Rightarrow 3$ Fix $\mathbf{x} \in \mathbb{R}^n$, and consider the function $\phi(\mathbf{y}) = f(\mathbf{y}) - \langle \nabla f(\mathbf{x}), \mathbf{y} \rangle$. Clearly $\phi(\mathbf{y})$ satisfies 2. Also, $\mathbf{y}^* = \mathbf{x}$ is a minimal solution. Therefore from 2,

$$\phi(\boldsymbol{x}) = \phi(\boldsymbol{y}^*) \le \phi\left(\boldsymbol{y} - \frac{1}{L}\boldsymbol{\nabla}\phi(\boldsymbol{y})\right) \le \phi(\boldsymbol{y}) + \frac{L}{2}\left\|\frac{1}{L}\boldsymbol{\nabla}\phi(\boldsymbol{y})\right\|_2^2 + \langle \boldsymbol{\nabla}\phi(\boldsymbol{y}), -\frac{1}{L}\boldsymbol{\nabla}\phi(\boldsymbol{y})\rangle$$
$$= \phi(\boldsymbol{y}) + \frac{1}{2L}\|\boldsymbol{\nabla}\phi(\boldsymbol{y})\|_2^2 - \frac{1}{L}\|\boldsymbol{\nabla}\phi(\boldsymbol{y})\|_2^2 = \phi(\boldsymbol{y}) - \frac{1}{2L}\|\boldsymbol{\nabla}\phi(\boldsymbol{y})\|_2^2.$$

Since $\nabla \phi(y) = \nabla f(y) - \nabla f(x)$, finally we have

$$f(\boldsymbol{x}) - \langle \nabla f(\boldsymbol{x}), \boldsymbol{x} \rangle \leq f(\boldsymbol{y}) - \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} \rangle - \frac{1}{2L} \|\nabla f(\boldsymbol{y}) - \nabla f(\boldsymbol{x})\|_2^2.$$

 $3 \Rightarrow 4$ Adding two copies of 3 with x and y interchanged, we obtain 4.

4 \Rightarrow 1 Applying the Cauchy-Schwarz inequality to 4, we obtain $\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2$. Also from Theorem 5.7, f(x) is convex.

 $2\Rightarrow 5$ Adding two copies of 2 with x and y interchanged, we obtain 5.

 $5\Rightarrow 2$

$$f(\boldsymbol{y}) - f(\boldsymbol{x}) - \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle = \int_0^1 \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x} + \tau(\boldsymbol{y} - \boldsymbol{x})) - \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle d\tau$$

$$\leq \int_0^1 \tau L \|\boldsymbol{y} - \boldsymbol{x}\|_2^2 d\tau = \frac{L}{2} \|\boldsymbol{y} - \boldsymbol{x}\|_2^2.$$

The non-negativity follows from Theorem 5.7.

3 \Rightarrow 6 Denote $\boldsymbol{x}_{\alpha} = \alpha \boldsymbol{x} + (1 - \alpha) \boldsymbol{y}$. From 3,

$$f(\boldsymbol{x}) \geq f(\boldsymbol{x}_{\alpha}) + \langle \nabla \boldsymbol{f}(\boldsymbol{x}_{\alpha}), (1-\alpha)(\boldsymbol{x}-\boldsymbol{y}) \rangle + \frac{1}{2L} \|\nabla \boldsymbol{f}(\boldsymbol{x}) - \nabla \boldsymbol{f}(\boldsymbol{x}_{\alpha})\|_{2}^{2}$$

$$f(\boldsymbol{y}) \geq f(\boldsymbol{x}_{\alpha}) + \langle \nabla \boldsymbol{f}(\boldsymbol{x}_{\alpha}), \alpha(\boldsymbol{y}-\boldsymbol{x}) \rangle + \frac{1}{2L} \|\nabla \boldsymbol{f}(\boldsymbol{y}) - \nabla \boldsymbol{f}(\boldsymbol{x}_{\alpha})\|_{2}^{2}.$$

Multiplying the first inequality by α , the second by $1-\alpha$, and summing up, we have

$$\alpha f(\boldsymbol{x}) + (1 - \alpha)f(\boldsymbol{y}) \ge f(\boldsymbol{x}_{\alpha}) + \frac{\alpha}{2L} \|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{x}_{\alpha})\|_{2}^{2} + \frac{1 - \alpha}{2L} \|\nabla f(\boldsymbol{y}) - \nabla f(\boldsymbol{x}_{\alpha})\|_{2}^{2}.$$

Finally, using the inequality

$$\|\alpha\|\mathbf{b} - \mathbf{d}\|_{2}^{2} + (1 - \alpha)\|\mathbf{c} - \mathbf{d}\|_{2}^{2} \ge \alpha(1 - \alpha)\|\mathbf{b} - \mathbf{c}\|_{2}^{2}$$

we have the result.

$$\begin{pmatrix} -\alpha(1-\alpha)\|\boldsymbol{b}-\boldsymbol{c}\|_{2}^{2} \geq -\alpha(1-\alpha)(\|\boldsymbol{b}-\boldsymbol{d}\|_{2} + \|\boldsymbol{c}-\boldsymbol{d}\|)_{2}^{2} \\ \text{Therefore} \\ \alpha\|\boldsymbol{b}-\boldsymbol{d}\|_{2}^{2} + (1-\alpha)\|\boldsymbol{c}-\boldsymbol{d}\|_{2}^{2} - \alpha(1-\alpha)(\|\boldsymbol{b}-\boldsymbol{d}\|_{2} + \|\boldsymbol{c}-\boldsymbol{d}\|_{2})^{2} \\ = (\alpha\|\boldsymbol{b}-\boldsymbol{d}\|_{2} - (1-\alpha)\|\boldsymbol{c}-\boldsymbol{d}\|_{2})^{2} \geq 0 \end{pmatrix}$$

<u>6⇒3</u> Dividing both sides by $1 - \alpha$ and tending α to 1, we obtain 3.

 $|2\Rightarrow7|$ From 2,

$$f(\boldsymbol{x}) \leq f(\boldsymbol{x}_{\alpha}) + \langle \nabla f(\boldsymbol{x}_{\alpha}), (1-\alpha)(\boldsymbol{x}-\boldsymbol{y}) \rangle + \frac{L}{2}(1-\alpha)^{2} \|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}$$

$$f(\boldsymbol{y}) \leq f(\boldsymbol{x}_{\alpha}) + \langle \nabla f(\boldsymbol{x}_{\alpha}), \alpha(\boldsymbol{y}-\boldsymbol{x}) \rangle + \frac{L}{2}\alpha^{2} \|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}$$

Multiplying the first inequality by α , the second by $1-\alpha$, and summing up, we have

$$\alpha f(\boldsymbol{x}) + (1 - \alpha)f(\boldsymbol{y}) \le f(\boldsymbol{x}_{\alpha}) + \frac{L}{2} \left(\alpha (1 - \alpha)^2 + (1 - \alpha)\alpha^2 \right) \|\boldsymbol{x} - \boldsymbol{y}\|_2^2.$$

The non-negativity follows from Theorem 5.7.

 $7\Rightarrow 2$ Dividing both sides by $1-\alpha$ and tending α to 1, we obtain 2. The non-negativity follows from Theorem 5.7.

5.4 Differentiable Strongly Convex Functions

Definition 5.14 A continuously differentiable function $f(\mathbf{x})$ is called *strongly convex* on \mathbb{R}^n (notation $f \in \mathcal{S}^1_{\mu}(\mathbb{R}^n)$) if there exists a constant $\mu > 0$ such that

$$f(\boldsymbol{y}) \geq f(\boldsymbol{x}) + \langle \boldsymbol{\nabla} f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle + \frac{1}{2} \mu \| \boldsymbol{y} - \boldsymbol{x} \|_2^2, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n.$$

The constant μ is called the *convexity parameter* of the function f.

Example 5.15 The following functions are some examples of strongly convex functions:

- 1. $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||_2^2$.
- 2. $f(\mathbf{x}) = \alpha + \langle \mathbf{a}, \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{A}\mathbf{x}, \mathbf{x} \rangle$, for $\mathbf{A} \succeq \mu \mathbf{I}$, $\mu > 0$.
- 3. $|x| \in \mathcal{S}_1^1([0,1])$, but $|x| \notin \mathcal{S}_1^1(\mathbb{R})$. $|x| \in \mathcal{S}_1^1(\{0\})$ (Function |x| is strongly convex only at $0 \in \mathbb{R}$.
- 4. A sum of a convex and a strongly convex functions.
- 5. LASSO (Least Absolute Shrinkage and Selection Operator) with rank(\mathbf{A}) = n: $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_1$ and $\lambda > 0$.
- 6. The ℓ_2 -regularized logistic regression function $f(\boldsymbol{x}) = \log(1 + \exp(-\langle \boldsymbol{a}, \boldsymbol{x} \rangle)) + \lambda \|\boldsymbol{x}\|_2^2$, $\lambda > 0$, which is a sum of a convex function and a strongly convex function.