1. Constant Step

The sequence {hy}32, is chosen in advance. For example

hr :=h >0,
h

hg = .

F k+1

This is the simplest strategy.

2. Exact Line Search (Cauchy Step-Size)

The sequence {hy}7°, is chosen such that
hi = a in f(xr — hV f(xy)).
k= argmin f (x f(xr))
This choice is only theoretical since even for the one dimensional case, it is very difficult and
expensive.
3. Goldstein-Armijo Rule

Find a sequence {hy}32 such that

a(V f(xr), T — Trr1)
BV f(xr), xp — Tpt1)

IV IA
=
8
z
|
=
8
ol
+

where 0 < o < 8 < 1 are fixed parameters.
Since f(@xp4+1) = f(xr — i V f(xy)),
Flar) = BhilV f(@)l3 < flrar) < flaw) — ahy||V f ()3
The acceptable steps exist unless f(xg41) = f(xr — hV f(xr)) is not bounded from below.

4. Barzilai-Borwein Step-Size!

Let us define s;_1 := @ — xx—1 and y;,_; := Vf(xg) — Vf(xr—1). Then, we can define the
Barzilai-Borwein (BB) step sizes {h}.}3°, and {h2}2:

o sl
<3k717yk—1>’
2 (8k—1,Yp—1)
E= " 2
Y13

The first step-size is the one which minimizes the following secant condition ||%sk_1 —ye_1ll3
while the second one minimizes ||s;_1 — hy;_; 3.

Now, consider the problem

where f € Ci’l(R"), and f(zx) is bounded from below.

1J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,” IMA Journal of Numerical Analysis, 8
(1988), pp. 141-148.
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Let us evaluate the result of one step of the steepest descent method.
Consider y =  — hV f(x). From Lemma 3.6,

) < f@)+ (V@)Y - )+ %y -l

2
= @)~ V@3 + IV A )3

= fla)=h (1= 51) IVF@IE 6

Thus, one step of the steepest descent method decreases the value of the objective function at
least as follows for h* =1/L.

1
f) < f@) = 57 IV (@)l
Now, for the Goldstein-Armijo Rule, since xy1 = x — hy V f(xy), we have:
f(@r) = f(®rg1) < Bhi||V f (22113,
and from (5)
h
Fan) ~ o) 2 (1= 2E0) IV 501

Therefore, hy, > 2(1 — )/L.
Also, substituting in

flar) = flarin) > ahl|V F(z)]3 > %a(l — BV f (zn)II5.

Thus, in the three step-size strategies excepting the BB step size considered here, we can say
that

@) = f@i) > IV @)l

for some positive constant w.
Summing up the above inequality we have:

N
=S IV F@I3 < fl@o) = fl@ns) < flao) — f*
k=0

where f* is the optimal value of the problem.
As a simple consequence we have

IVf(xg)]l2 =0 as k— oo.

Finally,
1 I 1/2
* = min |V < = - f : 6
divi= i [V F @0l < s | Z(7Ge0) — 1) ©)
Remark 4.14 g3 — 0, but we cannot say anything about the rate of convergence of the sequence
{f(xr)} or {=i}.
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Example 4.15 Consider the function f(z,y) = %:L‘Q + iy‘l — %yQ. (0,—1)" and (0,1)7 are local
minimal solutions, but (0,0)7 is a stationary point.
If we start the steepest descent method from (1,0)”, we will only converge to the stationary

point.

We focus now on the following problem class:

Model: 1. min f(x)
zcR"

2. fecy' (RY)
3. f(x) is bounded from below
Oracle: Only function and gradient values are available

Approximate solution: | Find & € R" such that f(&) < f(xo) and ||V f(Z)|2 < €

From (6), we have
L

Remark 4.16 This is much better than the result of Theorem 4.6, since it does not depend on n.

Finally, consider the following problem under Assumption 4.17.

Assumption 4.17
2,2 )
1. fecCy (R");
2. There is a local minimum x* of the function f(x);
3. We know some bound 0 < ¢ < L < oo for the Hessian at x*:

(I X V?f(z*) < LI,

4. Our starting point xg is close enough to x*.

Theorem 4.18 Let f(x) satisfy our assumptions above and let the starting point xy be close
enough to a local minimum:

o — s < 7 1= 2
ro = ||xo — ri=—.
0 0 2 Vi

Then, the steepest descent method with step-size h* = 2/(L + ¢) converges as follows:

_ k
. rro 20
|y < 1 .
i xHQ_T—ro( L+3£>

This rate of convergence is called (R-)linear.

Proof:
In the steepest descent method, the iterates are g1 = @ — hi V f (k).

Since V f(x*) =0,

1
Vf(xr) =Vf(xy) —Vf(z") = /0 V2f(x* + 7(x) — x*))(x) — x¥)dT = Gp(8 — TF),

16



and therefore,
Tpr1 — " =z — & — WGz, — x*) = (I — hpGg) (), — 7).
Let ry = ||y — «*||2. From Lemma 3.8,
V2f(x*) — Ml < V2f(x* + 7(x) — x*)) < V2f(x*) + 7Mry 1.
Integrating all parts from 0 to 1 and using our hypothesis,
(¢— %’“M)I <Gy < (L+ %M)I.

Therefore,
(1 — hi(L + %’“M)) =<1 h,Gy < (1 — gl — %’“M)) I.
We arrive at
1T — hyGrll2 < max{|ag (k)] bk (he)[}

where ay(h) =1 — h({ — 5 M) and by(h) = h(L + FM) — 1.

Notice that a;(0) =1 and b (0) = —1.

Now, let us use our hypothesis that ro < 7.

When ay(h) = bi(h), we have 1 — h(€ — Z: M) = h(L 4 - M) — 1, and therefore

" 2
hy = 0

(Surprisingly, it does not depend neither on M nor ry). Finally,

2
e = llows — %l < (1= 2oy (0= 201) ) o = o7l

That is,
L—+¢ rM
Tht1 < <M + M) Tk-
and rp g <rp < T
Now, let us analyze the rate of convergence. Multiplying the above inequality by M /(L + ¢),
Mrypy _ M(L - z)r M?r?
L+¢ =~ (L+02 " @L+or

Calling ay, = % and ¢ = LQTlizv we have

(L~ (o = q)*)

= (ap —q) ")

a1 < (1—qlag +af = ap(l+ag —q) =

Now, since 1, < %, ap —q = ]Xfl’z — LL-fZ < 0,and 1+ (ap — q) = f—;ﬁ + JZII’Z > 0. Therefore,

—1 < ar—q<0,and (7) becomes < 2k

14+q—ar "
1 > 1+q_1.
Of41 o
1
q_1>q(+q)_q_1:(1+q)<q_1>'
Q41 (07" Qg

and then,
q k(4 w( 20 L+ e
o 1>(1+q) <a0 1) (1+q) <L+€Mm 1 (I1+4q) - 1

Finally, we arrive at
Tro 2/ k
= ||z — a2 < 1- .
e = e H2_f—r0< L+3€>
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