Definition 8.1 A pair of sequences {¢(x)}72, and {A\}32, with A\ > 0 is called an estimate
sequence of the function f(x) if
A — 0,

and for any & € R" and any k > 0, we have
or(x) < (1= ) f(x) + Augo(@).

Lemma 8.2 Given an estimate sequence {¢y()}72,, {M\x}72, and if for some sequence {x;}72,
we have

f(xr) < ¢f == min ¢p(x)
xecR

then f(zy) — f(z*) < Ap(¢o(x”) — f(x)) = 0.

Proof:
It follows from the definition. 1

Lemma 8.3 Assume that
1. f €8, (R"), possible with 4 = 0 (which means that f € FLR™)).

2. ¢o(x) is an arbitrary function on R".

3. {yr}i, is an arbitrary sequence in R".
(0.9}
4. {og}32 _, is an arbitrary sequence such that «_; =0, ay, € (0,1] (k=0,1,...), and Z ap =
. k=0
k—1 >
Then the pair of sequences { H (1-— ai)} and {¢g(x)}32, recursively defined as
i=-1 k=0
,u
@) = (1—an)on@) + a [ () + (VF W)@ — ye) + 5 e — wyl3]

is an estimate sequence.

Proof:

Let us prove by induction in k. For k =0, ¢p(x) = (1 — (1 — a_1)) f(x) + (1 — a_1)do(x) since
a_1 = 0. Suppose that the induction hypothesis is valid for any index equal or smaller than k.
Since f € SL(]R”),

Prr1(x) = (1 —ap)pp(x) + ag [f(yk) + (VF(yp):z—yp) + gHw - yk”%}
1

— ag)or(x) + ap f(x)

IN

k—1 k-1
1-(1—ap) J[J1- ai)) f(®) + (1 = ay) <¢k(ﬂ3) - <1 - JJa- ai)) f($)>

i=—1 1=—1

1=—1 i=—1

k—1 k—1
< <1 —(—ap) J[JTOO- ai)) fl)+(1—ax) T (1 = cw)o(w)
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Now, it remains to show that Hf;il(l — ;) — 0. This is equivalent to show that log Hf:_il(l -

a;) — —oo. Using the inequality log(1l — a) < —a for o € (—00, 1), we have
k-1 k—1 k—1

log H(l—ai): Z log(1 — o) < — Z a; — —00
i=—1 i=—1 i=—1

due to our assumption. 1

Lemma 8.4 Let f:R" — R be an arbitrary continuously differentiable function. Also let ¢j € R,
p=>0,7% >0, vy € R", {y,}72,, and {a}2, given arbitrarily sequences such that a1 = 0,
ar € (0,1] (k = 0,1,...). In the special case of p = 0, we further assume that ¢ > 0 and
ar <1 (k=0,1,...). Let ¢o(x) = ¢f + L[| — vol3. If we define recursively ¢p1(x) such as the
previous lemma:

Fra(@) = (1= a)on(@) +ar [ Flye) + (VFw). 2 —yp) + Slle w3

then ¢1(x) preserve the canonical form

* Ve+1
Prr1(T) = Ppy1 + %le — Vg3 (13)
for
Yerr = (1 —ap)ye + arp,
1
V1 = — (1 — o) vr + apyy, — ' VF(y)ls
YEk+1
* * O‘z 2
Prr1 = (1 —an)op +arf(yy) — 5 IV £yl
Vk+1
ap(l —ag)ye (1
O ORI (K 124 (9 F ) v w))
V41
Proof:

We will use again the induction hypothesis in k. Note that V2¢0(a:) = v9I. Now, for any k£ > 0,
V2@ (x) = (1 — ) V3 (x) + e = (1 — ) vk + ) I = YL

Therefore, ¢r+1(x) is a quadratic function of the form (13). Also, y4+1 > 0 since p > 0 and
ar >0 (k=0,1,...); or if u =0, we assumed that 79 > 0 and a4, € (0,1) (k=0,1,...).
From the first-order optimality condition

Vopi(x) = (1-ap)Voy(x) +arVf(y) + arp(e —yy)
= (I —ag)w(z —vr) + aVF(yg) + arp(z —y;) = 0.
Thus,
T =V = b (1 — ar)vevr + arpyy, — o'V f(yy)]
Vk+1

is the minimal optimal solution of ¢y11(x).
Finally, from what we proved so far and from the definition

1Y) = Grr + B lyr — virall3

= (1 —an)on(yy) + arf(yy) (14)
= (1—ap) (¢ + By — vrll3) + o f(yy)-
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Now,

1
Vke1 — Yy = — (1 — o) (ve —yp) = V F(yy)] -
Vk+1
Therefore,
P52 vk — yill3 ey (1= aw)® i lloe =yl + RV £ ()3 (15)
=200 (1 — ap) e (V F (Yg), v — y)] -
Substituting (15) into (14), we obtain the expression for ¢ _ ;. 1

Theorem 8.5 Let L > p > 0. Consider f € SL’}L(IR{”), possible with 4 = 0 (which means that

fe f}:’l(R”)). For given g € R", let us choose ¢f = f(xo) and vy := xy. Consider also 79 > 0
such that L > v9 > 1 > 0. Define the sequences {a}32 1, {7 )20, {¥etico: {Zr}i2or {vr}ilos
{71152, and {¢r(x)}32, for the iteration k starting at &k := 0:

a_1 = 07
ai € (0,1] root of La% = (1 — agp)yk + Qg = Yet1,
QYEVE + Ve+1Tk

y =
¥ Ve T Qg
. 1
xpq1 s such that  f(xry1) < f(yy) — EHVf(yk)H%,
1
Vg1 = ——[(1 — ap) vk + agpyy — axV F(yg)]s
V41
i (1~ @)+ onflan) — =5 |V £ )3
g — (0% -
k+1 k)Pk kEJ\Yk 2’7]@’-}-1 Yr)ll2
ap(l — o)k (1
(B~ wnll3 + (V F i) o — 9 )
Ve+1
* V41
Prr1(x) = Py + TJrHQU — V413
E—1
Then, we satisfy all the conditions of Lemma 8.2 for A\, = H (1 — ).
i=——1

Proof:
In fact, due to Lemmas 8.3 and 8.4, it just remains to show that oy € (0,1] for (k =0,1,...)
o

such that Z aj = 00. In the special case of = 0, we must show that o, <1 (k=0,1,...). And

finally that f(xy) < ¢j.

Let us show both using induction hypothesis.

Consider the quadratic equation in a, go(a) := La? + (y0 — u)a — 70 = 0. Notice that its
discriminant A := (y0 — p)? +4vL is always positive by the hypothesis. Also, go(0) = —y < 0, due
to the hypothesis again. Therefore, this equation always has a root ap > 0. Since go(1) = L—pu > 0,
ap < 1, and we have ag € (0,1]. If p = 0, and a9 = 1, we will have L = 0 which implies 79 = 0
which contradicts our hypothesis. Then o < 1 in this case. In addition, v; := (1 —ag)vyo +aop > 0
and vo + app > 0. The same arguments are valid for any k. Therefore, ay, € (0,1], and oy <
1 (k=0,1,...,)if p=0.

Finally, Lai = (1 — ag) v+ owp > (1 — )+ agp = p. And we have ay > /4, and therefore,
o0
Z ap = 00, if > 0. For the case p = 0, the argument is the same as the proof of Theorem 8.6.
k=0
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