
We know from Corollary 4.5 that the number of iterations of the uniform grid method is at least
(⌊L/(2ε)⌋+2)n. Theorem 4.6 showed that any method which uses only function evaluations requires
at least (⌊L/(2ε)⌋)n calls to have a better performance than ε. If for instance we take ε = O(L/n),
these two bounds coincide up to a constant factor. In this sense, the uniform grid method is an
optimal method for the class of problems P.

4.3 Optimality Conditions for Smooth Optimization Problems

Let f : Rn → R be a differentiable function on Rn, x̄ ∈ Rn, and s be a direction in Rn such that
∥s∥2 = 1. Consider the local decrease (or increase) of f(x) along s:

f ′(x; s) = lim
α→0

1

α
[f(x̄+ αs)− f(x̄)] .

Since f(x̄+ αs)− f(x̄) = α⟨∇f(x̄), s⟩+ o(∥αs∥2), we have f ′(x̄; s) = ⟨∇f(x̄), s⟩.
Using the Cauchy-Schwarz inequality −∥x∥2∥y∥2 ≤ ⟨x,y⟩ ≤ ∥x∥2∥y∥2,

f ′(x̄; s) = ⟨∇f(x̄), s⟩ ≥ −∥∇f(x̄)∥2.

Choosing in particular the direction s̄ = −∇f(x̄)/∥∇f(x̄)∥2,

f ′(x̄; s) = −
⟨
∇f(x̄),

∇f(x̄)

∥∇f(x̄)∥2

⟩
= −∥∇f(x̄)∥2.

Thus, the direction −∇f(x̄) is the direction of the fastest local decrease of f(x) at point x̄.

Theorem 4.8 (First-order necessary optimality condition) Let x∗ be a local minimum of
the differentiable function f(x). Then

∇f(x∗) = 0.

Proof:
Let x∗ be the local minimum of f(x). Then, there is r > 0 such that for all y with ∥y−x∗∥2 ≤ r,

f(y) ≥ f(x∗).
Since f is differentiable on Rn,

f(y) = f(x∗) + ⟨∇f(x∗),y − x∗⟩+ o(∥y − x∗∥2) ≥ f(x∗).

Dividing by ∥y − x∗∥2, and taking the limit y → x∗,

⟨∇f(x∗), s⟩ ≥ 0, ∀s ∈ Rn, ∥s∥2 = 1.

Consider the opposite direction −s, and then we conclude that

⟨∇f(x∗), s⟩ = 0, ∀s ∈ Rn, ∥s∥2 = 1.

Choosing s = ei (i = 1, 2, . . . , n), we conclude that ∇f(x∗) = 0.

Remark 4.9 For the first-order sufficient optimality condition, we need convexity for the function
f(x).

Corollary 4.10 Let x∗ be a local minimum of a differentiable function f(x) subject to linear
equality constraints

x ∈ L := {x ∈ Rn | Ax = b} ̸= ∅,
where A ∈ Rm×n, b ∈ Rm, m < n.

Then, there exists a vector of multipliers λ∗ ∈ Rm such that

∇f(x∗) = ATλ∗.

Proof:
Consider the vectors ui (i = 1, 2, . . . , k) with k ≥ n−m which form an orthonormal basis of the

null space of A. Then, x ∈ L can be represented as
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x = x(t) := x∗ +
k∑

i=1

tiui, t ∈ Rk.

Moreover, the point t = 0 is the local minimal solution of the function ϕ(t) = f(x(t)).
From Theorem 4.8, ϕ′(0) = 0. That is,

dϕ

dti
(0) = ⟨∇f(x∗),ui⟩ = 0, i = 1, 2, . . . , k.

Now there is t∗ ∈ Rk and λ∗ ∈ Rm such that

∇f(x∗) =
k∑

i=1

t∗iui +ATλ∗.

For each i = 1, 2, . . . , k,
⟨∇f(x∗),ui⟩ = t∗i = 0.

Therefore, we have the result.

The following type of result is called theorems of the alternative, and are closed related to duality
theory in optimization.

Corollary 4.11 Given A ∈ Rm×n, b ∈ Rm, c ∈ Rn, η ∈ R, either{
⟨c,x⟩ < η
Ax = b

has a solution x ∈ Rn, (3)

or 
{

⟨b,λ⟩ > 0

ATλ = 0
or{

⟨b,λ⟩ ≥ η

ATλ = c

 has a solution λ ∈ Rm, (4)

but never both

Proof:
Let us first show that if ∃x ∈ Rn satisfying (3), ̸ ∃λ ∈ Rm satisfying (4). Let us assume by

contradiction that ∃λ. Then ⟨λ,Ax⟩ = ⟨λ, b⟩ and in the homogeneous case it gives 0 = ⟨λ, b⟩ > 0
and in the non-homogeneous case it gives η > ⟨c,x⟩ = ⟨λ, b⟩ ≥ η. Both of cases are impossible.

Now, let us assume that ̸ ∃x ∈ Rn satisfying (3). If additionally ̸ ∃x ∈ Rn such that Ax = b, it
means that the columns of the matrix A do not spam the vector b. Therefore, there is 0 ̸= λ ∈ Rm

which is orthogonal to all of these columns and ⟨b,λ⟩ ̸= 0. Selecting the correct sign, we constructed
a λ which satisfies the homogeneous system of (4). Now, if for all x such that Ax = b we have
⟨c,x⟩ ≥ η, it means that the minimization of the function f(x) = ⟨c,x⟩ subject to Ax = b has an
optimal solution x∗ with f(x∗) ≥ η (since ∃x ∈ Rn such that Ax = b, we can always assume that
m ≤ n eliminating redundant linear constraints from the system. If n = m and A is nonsingular,
take λ = A−Tc. Otherwise, we can eliminate again redundant linear constraint to have n > m).
From Corollary 4.10, ∃λ ∈ Rm such that ATλ = c, and ⟨b,λ⟩ = ⟨x∗,ATλ⟩ = ⟨x∗, c⟩ ≥ η.

If f(x) is twice differentiable at x̄ ∈ Rn, then for y ∈ Rn, we have

∇f(y) = ∇f(x̄) +∇2f(x̄)(y − x̄) + o(∥y − x̄∥2),

where o(r) is such that limr→0 ∥o(r)∥2/r = 0 and o(0) = 0.
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Theorem 4.12 (Second-order necessary optimality condition) Let x∗ be a local minimum
of a twice continuously differentiable function f(x). Then

∇f(x∗) = 0, ∇2f(x∗) ⪰ O.

Proof:
Since x∗ is a local minimum of f(x), ∃r > 0 such that for all y ∈ Rn which satisfy ∥y−x∗∥2 ≤ r,

f(y) ≥ f(x∗).
From Theorem 4.8, ∇f(x∗) = 0. Then

f(y) = f(x∗) +
1

2
⟨∇2f(x∗)(y − x∗),y − x∗⟩+ o(∥y − x∗∥22) ≥ f(x∗).

And ⟨∇2f(x∗)s, s⟩ ≥ 0, ∀s ∈ Rn with ∥s∥2 = 1.

Theorem 4.13 (Second-order sufficient optimality condition) Let the function f(x) be twice
continuously differentiable on Rn, and let x∗ satisfy the following conditions:

∇f(x∗) = 0, ∇2f(x∗) ≻ O.

Then, x∗ is a strict local minimum of f(x).

Proof:
In a small neighborhood of x∗, function f(x∗) can be represented as:

f(y) = f(x∗) +
1

2
⟨∇2f(x∗)(y − x∗),y − x∗⟩+ o(∥y − x∗∥22).

Since o(r)/r → 0, there is a r̄ > 0 such that for all r ∈ [0, r̄],

|o(r)| ≤ r

4
λ1(∇2f(x∗)),

where λ1(∇2f(x∗)) is the smallest eigenvalue of the symmetric matrix ∇2f(x∗) which is positive.
Then

f(y) ≥ f(x∗) +
1

2
λ1(∇2f(x∗))∥y − x∗∥22 + o(∥y − x∗∥22).

W.L.O.G, considering that r̄ < 1, |o(r2)| ≤ r2λ1(∇2f(x∗))/4 for r ∈ [0, r̄], finally we arrived at

f(y) ≥ f(x∗) +
1

4
λ1(∇2f(x∗))∥y − x∗∥22 > f(x∗).

4.4 Algorithms for Minimizing Smooth Functions

4.4.1 Steepest Descent Method

Consider f : Rn → R a differentiable function on its domain.

Steepest Descent Method

Choose: x0 ∈ Rn

Iterate: xk+1 = xk − hk∇f(xk), k = 0, 1, . . .

We consider four strategies for the step-size hk:
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