
Lemma 3.8 Let f ∈ C2,2
M (Rn), with ∥∇2f(x)−∇2f(y)∥2 ≤ M∥x− y∥2. Then

∇2f(x)−M∥y − x∥2I ⪯ ∇2f(y) ⪯ ∇2f(x) +M∥y − x∥2I.

Proof:
Since f ∈ C2,2

M (Rn), ∥∇2f(y) − ∇2f(x)∥2 ≤ M∥y − x∥2. This means that the eigenvalues of
the symmetric matrix ∇2f(y)−∇2f(x) satisfy:

|λi(∇2f(y)−∇2f(x))| ≤ M∥y − x∥2, i = 1, 2, . . . , n.

Therefore,
−M∥y − x∥2I ⪯ ∇2f(y)−∇2f(x) ⪯ M∥y − x∥2I.

3.1 Exercises

1. Prove Lemma 3.7.

4 Optimality Conditions and Algorithms for Minimizing Func-
tions

4.1 General Minimization Problem and Terminologies

Definition 4.1 We define the general minimization problem as follows
minimize f(x)
subject to fj(x) & 0, j = 1, 2, . . . ,m

x ∈ S,
(1)

where f : Rn → R, fj : Rn → R (j = 1, 2, . . . ,m), the symbol & could be =, ≥, or ≤, and S ⊆ Rn.

Definition 4.2 The feasible set Q of (1) is

Q = {x ∈ S | fj(x) & 0, (j = 1, 2, . . . ,m)}.

In the following, we assume S ≡ Rn.

• If Q ≡ Rn, (1) is a unconstrained optimization problem.

• If Q ⊊ Rn, (1) is a constrained optimization problem.

• If all functionals f(x), fj(x) are differentiable, (1) is a smooth optimization problem.

• If one of functionals f(x), fj(x) is non-differentiable, (1) is a non-smooth optimization prob-
lem.

• If all constraints are linear fj(x) = ⟨aj ,x⟩ + bj (j = 1, 2, . . . ,m), (1) is a linear constrained
optimization problem.

– In addition, if f(x) is linear, (1) is a linear programming problem.

– In addition, if f(x) is quadratic, (1) is a quadratic programming problem.

• If f(x), fj(x) (j = 1, 2, . . . ,m) are quadratic, (1) is a quadratically constrained quadratic
programming problem.

Definition 4.3 x∗ is called a global optimal solution of (1) if f(x∗) ≤ f(x), ∀x ∈ Q. Moreover,
f(x∗) is called the global optimal value. x∗ is called a local optimal solution of (1) if there exists
an open ball B(x∗, ε) := {x ∈ Rn | ∥x − x∗∥2 < ε} such that f(x∗) ≤ f(x), ∀x ∈ B(x∗, ε) ∩ Q.
Moreover, f(x∗) is called a local optimal value.

8



4.2 Complexity Bound for a Global Optimization Problem on the Unit Box

Consider one of the simplest problems in optimization, that is, minimizing a function on the n-
dimensional box.{

minimize f(x)
subject to x ∈ Bn := {x ∈ Rn | 0 ≤ [x]i ≤ 1, i = 1, 2, . . . , n}. (2)

To be coherent, we use the ℓ∞-norm:

∥x∥∞ = max
1≤i≤n

|[x]i|.

Let us also assume that f(x) is Lipschitz continuous on Bn:

|f(x)− f(y)| ≤ L∥x− y∥∞, ∀x,y ∈ Bn.

Let us define a very simple method to solve (2), the uniform grid method.

Given a positive integer p > 0,

1. Form (p+ 1)n points

xi1,i2,...,in =

(
i1
p
,
i2
p
, . . . ,

in
p

)T

where (i1, i2, . . . , in) ∈ {0, 1, . . . , p}n.

2. Among all points xi1,i2,...,in , find a point x̄ which has the minimal value for the
objective function.

3. Return the pair (x̄, f(x̄)) as the result.

Theorem 4.4 Let f(x∗) be the global optimal value for (2). Then the uniform grid method yields

f(x̄)− f(x∗) ≤ L

2p
.

Proof:
Let x∗ be a global optimal solution. Then there are coordinates (i1, i2, . . . , in) such that x :=

xi1,i2,...,in ≤ x∗ ≤ xi1+1,i2+1,...,in+1 =: y. Observe that [y]i − [x]i = 1/p for i = 1, 2, . . . , n and
[x∗]i ∈ [[x]i, [y]i] (i = 1, 2, . . . , n).

Consider x̂ = (x+ y)/2 and form a new point x̃ as:

[x̃]i :=

{
[y]i, if [x∗]i ≥ [x̂]i
[x]i, otherwise.

It is clear that |[x̃]i − [x∗]i| ≤ 1/(2p) for i = 1, 2, . . . , n. Then ∥x̃ − x∗∥∞ = max
1≤i≤n

|[x̃]i − [x∗]i| ≤

1/(2p). Since x̃ belongs to the grid,

f(x̄)− f(x∗) ≤ f(x̃)− f(x∗) ≤ L∥x̃− x∗∥∞ ≤ L/(2p).

Let us define our goal

Find x ∈ Bn such that f(x)− f(x∗) < ε.
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Corollary 4.5 The number of iterations necessary for the problem (2) to achieve the above goal
using the uniform grid method is at most(⌊

L

2ε

⌋
+ 2

)n

.

Proof:
Take p = ⌊L/(2ε)⌋ + 1. Then, p > L/(2ε) and from the previous theorem, f(x̄) − f(x∗) ≤

L/(2p) < ε. Observe that we constructed (p+ 1)n points.

Consider the class of problems P defined as follows:

Model: min
x∈Bn

f(x),

f(x) is ℓ∞-Lipschitz continuous on Bn.
Oracle: Only function values are available
Approximate solution: Find x̄ ∈ Bn such that f(x̄)− f(x∗) < ε

Theorem 4.6 For ε < L
2 , the number of iterations necessary for the class of problems P using any

method which uses only function evaluations is always at least (⌊ L
2ε⌋)

n.

Proof:
Let p = ⌊ L

2ε⌋ (which is ≥ 1 from the hypothesis).
Suppose that there is a method which requires N < pn calls of the oracle to solve the problem

in P.
Then, there is a point x̂ ∈ Bn = {x ∈ Rn | 0 ≤ [x]i ≤ 1, i = 1, 2, . . . , n} where there is no test

points in the interior of B := {x | x̂ ≤ x ≤ x̂+ e/p} where e = (1, 1, . . . , 1)T ∈ Rn.
Let x∗ := x̂+ e/(2p) and consider the function f̄(x) := min{0, L∥x− x∗∥∞ − ε}. Clearly, f̄ is

ℓ∞-Lipschitz continuous with constant L and its global minimum is −ε. Moreover, f̄(x) is non-zero
valued only inside the box B′ := {x | ∥x− x∗∥∞ ≤ ε/L}.

Since 2p ≤ L/ε, B′ ⊆ {x | ∥x− x∗∥∞ ≤ 1/(2p)} ⊆ B.
Therefore, f̄(x) is equal to zero to all test points of our method and the accuracy of the method

is ε.
If the number of calls of the oracle is less than pn, the accuracy can not be better than ε.

Theorem 4.6 supports the claim that the general optimization problem is unsolvable.

Example 4.7 Consider a problem defined by the following parameters. L = 2, n = 10, and
ε = 0.01.

lower bound (L/(2ε))n : 1020 calls of the oracle
computational complexity of the oracle : at least n arithmetic operations
total complexity : 1021 arithmetic operations
CPU : 1GHz or 109 arithmetic operations per second
total time : 1012 seconds
one year : ≤ 3.2× 107 seconds
we need : ≥ 10000 years

• If we change n by n+ 1, the # of calls of the oracle is multiplied by 100.

• If we multiply ε by 2, the arithmetic complexity is reduced by 1000.
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