Lemma 3.8 Let f € C?\’f(R”), with ||V2f(x) — V2f(y)|la < M|z — y||2. Then
Vif(x) — Mlly — 2|21 < V2 f(y) = V2 f(z) + My — z1.

Proof:
Since f € C?\f(R”), IV2f(y) — V2f(x)||2 < M||y — ||2. This means that the eigenvalues of
the symmetric matrix V2 f(y) — V2f(x) satisfy:

N (V2f(y) — V2f(@)| < My —zll2, i=1,2,...,n.

Therefore,
—Mlly —x|2I 2 V*f(y) — V> f(x) = M|y — z|21.
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3.1 Exercises
1. Prove Lemma 3.7.
4 Optimality Conditions and Algorithms for Minimizing Func-
tions

4.1 General Minimization Problem and Terminologies
Definition 4.1 We define the general minimization problem as follows

minimize  f(x)

subject to fj(x) &0, j=1,2,....,m (1)

xeSs,
where f:R" = R, f; :R" =R (j =1,2,...,m), the symbol & could be =, >, or <, and § C R".
Definition 4.2 The feasible set Q of (1) is
Q={zeS| fi(x) &0, (j=1,2,...,m)}.
In the following, we assume S = R".

o If @ =R", (1) is a unconstrained optimization problem.

If @ CR", (1) is a constrained optimization problem.

If all functionals f(x), fj(x) are differentiable, (1) is a smooth optimization problem.

If one of functionals f(x), fj(x) is non-differentiable, (1) is a non-smooth optimization prob-
lem.

If all constraints are linear fj(x) = (aj,x) +b; (j = 1,2,...,m), (1) is a linear constrained
optimization problem.

— In addition, if f(x) is linear, (1) is a linear programming problem.

— In addition, if f(x) is quadratic, (1) is a quadratic programming problem.

If f(x), fi(x) (j = 1,2,...,m) are quadratic, (1) is a quadratically constrained quadratic
programming problem.

Definition 4.3 z* is called a global optimal solution of (1) if f(x*) < f(x), V& € Q. Moreover,
f(x) is called the global optimal value. x* is called a local optimal solution of (1) if there exists
an open ball B(x*,¢) := {x € R" | [[x — x*|]2 < €} such that f(z*) < f(x), Ve e B(z*,e)NQ.
Moreover, f(x*) is called a local optimal value.



4.2 Complexity Bound for a Global Optimization Problem on the Unit Box

Consider one of the simplest problems in optimization, that is, minimizing a function on the n-
dimensional box.

minimize  f(x) )
subject to z € B, :={x cR" |0<[z]; <1, i=1,2,...,n}.

To be coherent, we use the £, ,-norm:

Jlloc = max [[a:|

Let us also assume that f(x) is Lipschitz continuous on By:
[f(x) = f(y)| < Ll|# - ylloo,  Va,y € By

Let us define a very simple method to solve (2), the uniform grid method.

Given a positive integer p > 0,
1. Form (p + 1)™ points
i g in\"
xil,iz,...,in - Ty Ty ey T
p P p
where (i1,49,...,1i,) € {0,1,...,p}"

2. Among all points x;, ;.. s, find a point & which has the minimal value for the
objective function.

3. Return the pair (Z, f(Z)) as the result.

Theorem 4.4 Let f(x*) be the global optimal value for (2). Then the uniform grid method yields

L
) — f(z*) < =.
@) - f(a) < 5
Proof:
Let «* be a global optimal solution. Then there are coordinates (i1, is9,...,4,) such that « :=
Tirigin < TF < X 41int1,.int1 =: Y. Observe that [y]; — [x]; = 1/p for i« = 1,2,...,n and

()i € [[2]i, [y)i] (i =1,2,...,n).
Consider & = (« + y)/2 and form a new point & as:

ﬁ%—{M“ﬁ@W>Mi

"] [x]i, otherwise.

It is clear that |[Z]); — [x*];| < 1/(2p) for i = 1,2,...,n. Then || — *||» = Jax [[Z]; — [x¥]i| <
<i<n

1/(2p). Since & belongs to the grid,

f@) = f(&") < f(@) - f(&") < L@ — 2"[|oo < L/(2p).

Let us define our goal

Find « € B,, such that f(x) — f(z*) <e. ‘




Corollary 4.5 The number of iterations necessary for the problem (2) to achieve the above goal
using the uniform grid method is at most
L n
— 2 .
(=] +2)
Proof:

Take p = [L/(2¢)] + 1. Then, p > L/(2¢) and from the previous theorem, f(&) — f(x*) <
L/(2p) < e. Observe that we constructed (p 4+ 1)" points. 1

Consider the class of problems P defined as follows:

Model: min f(x),
ZTeB,
f(x) is loo-Lipschitz continuous on By,.
Oracle: Only function values are available
Approximate solution: | Find & € B,, such that f(&) — f(z*) <¢

Theorem 4.6 For ¢ < %, the number of iterations necessary for the class of problems P using any

method which uses only function evaluations is always at least (LQ%J )"

Proof:

Let p = LQ%J (which is > 1 from the hypothesis).

Suppose that there is a method which requires N < p™ calls of the oracle to solve the problem
in P.

Then, there is a point & € B, = {x € R" | 0 < [z]; <1, i =1,2,...,n} where there is no test
points in the interior of B := {x | & < x < & + e/p} where e = (1,1,...,1)T € R™.

Let =* := & + e/(2p) and consider the function f(x) := min{0, L||z — £*||s — €}. Clearly, f is
{-Lipschitz continuous with constant L and its global minimum is —e. Moreover, f(x) is non-zero
valued only inside the box B’ := {x | || — *||cc <¢/L}.

Since 2p < L/e, B' C{x | ||x — ||« < 1/(2p)} C B.

Therefore, f(x) is equal to zero to all test points of our method and the accuracy of the method
is e.

If the number of calls of the oracle is less than p™, the accuracy can not be better than . 1

Theorem 4.6 supports the claim that the general optimization problem is unsolvable.

Example 4.7 Consider a problem defined by the following parameters. L = 2, n = 10, and
e = 0.01.

lower bound (L/(2¢))" : 10%° calls of the oracle

computational complexity of the oracle : at least n arithmetic operations

total complexity : 10?! arithmetic operations

CPU : 1GHz or 10? arithmetic operations per second
total time ;10" seconds

one year : <3.2x 107 seconds

we need : > 10000 years

e If we change n by n + 1, the # of calls of the oracle is multiplied by 100.

o If we multiply € by 2, the arithmetic complexity is reduced by 1000.
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