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アーキテクチャの異なる視点による分類

• Flynnによる命令とデータの流れに注目した並列計算機

の分類（1966年）

• SISD (Single Instruction stream, Single Data stream)
• SIMD (Single Instruction stream, Multiple Data stream)
• MISD (Multiple Instruction stream, Single Data stream)
• MIMD (Multiple Instruction stream, Multiple Data stream)

Instruction stream

Data stream
SISD SIMD MISD MIMD
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SIMD Variants

• Vector architectures
• SIMD extensions
• Graphics Processing Units (GPUs)

• SIMD variants exploit data-level parallelism
• Instruction-level parallelism in superscalar processors
• Thread-level parallelism in multicore processors
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Vector architecture

• Computers designed by Seymour Cray starting in the 1970s
• Basic idea:

• Read sets of data elements into “vector registers”
• Operate on those registers
• Disperse the results back into memory

Cray Supercomputer
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DAXPY in MIPS Instructions

Example:  DAXPY (double precision a x X + Y)
L.D F0,a ; load scalar a
DADDIU R4,Rx,#512 ; upper bound of what to load

Loop: L.D F2,0(Rx ) ; load X[i]
MUL.D F2,F2,F0 ; a x X[i]
L.D F4,0(Ry) ; load Y[i]
ADD.D F4,F2,F2 ; a x X[i] + Y[i]
S.D F4,9(Ry) ; store into Y[i]
DADDIU Rx,Rx,#8 ; increment index to X
DADDIU Ry,Ry,#8 ; increment index to Y
SUBBU R20,R4,Rx ; compute bound
BNEZ R20,Loop ; check if done

• Requires almost 600 MIPS operations
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DAXPY in VMIPS (MIPS with Vector) Instructions

• ADDV.D :  add two vectors
• ADDVS.D :  add vector to a scalar
• LV/SV :  vector load and vector store from address

• Example:  DAXPY (double precision a*X+Y)
L.D F0,a ; load scalar a
LV V1,Rx ; load vector X
MULVS.D V2,V1,F0 ; vector-scalar multiply
LV V3,Ry ; load vector Y
ADDV.D V4,V2,V3 ; add
SV Ry,V4 ; store the result

• Requires 6 instructions
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The basic structure of a vector architecture, VMIPS

• Eight 64-element vector registers
• All the functional units are vector functional units.
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Multiple functional units to improve the performance

• (a) can complete one addition per cycle
• (b) can complete four addition per cycle
• The vector register storage is divided across the lanes
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SIMD extensions

• Media applications operate on data types narrower than the 
native word size
• Example:  disconnect carry chains to “partition” adder

• Implementations:
• Intel MMX (1996)

• Eight 8-bit integer ops or four 16-bit integer ops
• Streaming SIMD Extensions (SSE) (1999)

• Eight 16-bit integer ops
• Four 32-bit integer/fp ops or two 64-bit integer/fp ops

• Advanced Vector Extensions (AVX 2010)
• Four 64-bit integer/fp ops
• 256 bit vectors -> 512 -> 1024

• Operands must be consecutive and aligned memory locations
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アーキテクチャの異なる視点による分類

• Flynnによる命令とデータの流れに注目した並列計算機

の分類（1966年）

• SISD (Single Instruction stream, Single Data stream)
• SIMD (Single Instruction stream, Multiple Data stream)
• MISD (Multiple Instruction stream, Single Data stream)
• MIMD (Multiple Instruction stream, Multiple Data stream)

MIMD
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Multi-threading

• Multi-threading 
processor

• Simultaneous 
multi-threading (SMT) 
processor

http://www.realworldtech.com/alpha-ev8-smt/
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The Free Lunch Is Over

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005

• Tuning, Optimization, and Parallel processing (Concurrency)
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Intel Skylake-X, Core i9-7980XE, 2017

• 18 core
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Multicore, Shared Memory System

• Caches are used to reduce latency and to lower network traffic
• Must provide hardware to ensure that caches and memory are consistent

(cache coherency)
• Must provide a hardware mechanism to support process (thread)  

synchronization

System

Main Memory (DRAM)

Chip

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

Network (NoC)

I/O
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NoC and Many-core

• NoC requirements: low latency, high throughput, low cost
• Focus on mesh topology

• Packet based data transmission via NoC routers and XY-
dimension order routing
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Simulating Ocean Currents

• Model as two-dimensional grids
• Discretize in space and time
• finer spatial and temporal resolution => greater accuracy

• Many different computations per time step
• Concurrency across and within grid computations

• Static and regular

(a) Cross sections (b) Spatial discretization of a cross section

Adapted from Parallel Computer Architecture, David E. Culler
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Grid Solver

• Gauss-Seidel (near-neighbor) sweeps to convergence
• interior n-by-n points of (n+2)-by-(n+2) updated in each sweep
• updates done in-place in grid
• difference from previous value computed
• accumulate partial diffs into global diff at end of every sweep
• check if it has converged to within a tolerance parameter

A[i,j ] = 0.2  (A [i,j ] + A [i,j – 1] + A [i – 1, j] +
A[i,j + 1] + A [i + 1,  j ])

Expr ession for updating each interior point:

Adapted from Parallel Computer Architecture, David E. Culler
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1.  int n;            /*size of matrix: (n + 2-by-n + 2) elements*/ 
2.  float **A, diff = 0; 
 
3.  main() 
4.  begin 
5.   read(n) ;           /*read input parameter: matrix size*/ 
6.   A  malloc (a 2-d array of size n + 2 by n + 2 doubles); 
7.   initialize(A);        /*initialize the matrix A somehow*/  
8.   Solve (A);         /*call the routine to solve equation*/ 
9.  end main 
 
10. procedure Solve (A)       /*solve the equation system*/ 
11.  float **A;          /*A is an (n + 2)-by-(n + 2) array*/ 
12. begin 
13.  int i, j, done = 0; 
14.  float diff = 0, temp; 
15.  while (!done) do       /*outermost loop over sweeps*/ 
16.   diff = 0;          /*initialize maximum difference to 0*/ 
17.   for i  1 to n do     /*sweep over nonborder points of grid*/ 
18.    for j  1 to n do 
19.     temp = A[i,j];     /*save old value of element*/ 
20.     A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 
21.      A[i,j+1] + A[i+1,j]); /*compute average*/ 
22.     diff += abs(A[i,j] - temp);      
23.    end for 
24.   end for 
25.   if (diff/(n*n) < TOL) then done = 1;         
26.  end while 
27. end procedure 

Sequential Version

Adapted from Parallel Computer Architecture, David E. Culler
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Exploit Application Knowledge

• Different ordering of updates: may converge quicker or slower 
• Red sweep and black sweep are each fully parallel: 
• Global synch between them (conservative but convenient)
• Ocean uses red-black
• We use simpler, asynchronous one to illustrate

• no red-black, simply ignore dependences within sweep
• parallel program nondeterministic

Red point

Black point

• Reorder grid traversal: red-black ordering

Adapted from Parallel Computer Architecture, David E. Culler
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Assignment

• Static assignment: decomposition into rows
• block assignment of rows: Row i is assigned to process 
• cyclic assignment of rows: process i is assigned rows i, i+p, 

...
– Dynamic assignment

• get a row index, work on the row,  get a new row,  ...
• What is the mechanism?
• Concurrency?  Volume of Communication?

i
p

P0

P1

P2

P4

block assignment

Adapted from Parallel Computer Architecture, David E. Culler
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Shared Address Space Solver

• Assignment controlled by values of variables used as loop bounds

• Single Program Multiple Data (SPMD)

Sweep

Test Convergence

Processes

Solve Solve Solve Solve

Adapted from Parallel Computer Architecture, David E. Culler
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Parallel program in SPMD model
10.  procedure Solve(A) 
11.   float **A;     /*A is entire n+2-by-n+2 shared array, 
             as in the sequential program*/ 
12. begin 
13.  int i,j, pid, done = 0; 
14.  float temp, mydiff = 0;    /*private variables*/ 
14a.  int mymin = 1 + (pid * n/nprocs); /*assume that n is exactly divisible by*/ 
14b.  int mymax = mymin + n/nprocs - 1 /*nprocs for simplicity here*/ 
 
15.   while (!done) do    /*outer loop sweeps*/  
16.    mydiff = diff = 0;   /*set global diff to 0 (okay for all to do it)*/  
16a.  BARRIER(bar1, nprocs);   /*ensure all reach here before anyone modifies diff*/ 
17.      for i  mymin to mymax do   /*for each of my rows*/  
18.    for j  1 to n do   /*for all nonborder elements in that row*/ 
19.    temp = A[i,j];     
20.    A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 
21.      A[i,j+1] + A[i+1,j]); 
22.    mydiff += abs(A[i,j] - temp);  
23.    endfor 
24.      endfor 
25a.     LOCK(diff_lock);     /*update global diff if necessary*/ 
25b.   diff += mydiff; 
25c.     UNLOCK(diff_lock); 
25d.     BARRIER(bar1, nprocs);  /*ensure all reach here before checking if done*/ 
25e.     if (diff/(n*n) < TOL) then done = 1;  /*check convergence; all get  
          same answer*/ 
25f.     BARRIER(bar1, nprocs); 
26.  endwhile 
27. end procedure 

Adapted from Parallel Computer Architecture, David E. Culler
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Kalray Multi-Purpose Processor Architecture



CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 25

Epiphany-V: A 1024 processor 64-bit RISC System-On-Chip
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Computer Architecture & Design


