FE (R 30FE) hix

Course number: CSC.T363

AN
AEa—3T7 —FTIF~
Computer Architecture

13. X945 SIMDIZEI+AH5T—2L N5 &
Data-Level Parallelism in Vector and SIMD

www.arch.cs.titech.ac.jp/lecture/CA/

&

Room No.W321 aalk— FHRIFR
Tue 13:20-16:20, Fri 13:20-14:50 Kenji Kise, Department of Computer Science

Kise _at_ c.titech.ac.jp

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 1

T—XTOFYDERLDHMICLD5EE

\

o FlynnlZ&kbaRRET—2DHRNITTEE L1515 E 1%
D538 (19665)
« SISD (Single Instruction stream, Single Data stream)

« SIMD (Single Instruction stream, Multiple Data stream)
« MISD (Multiple Instruction stream, Single Data stream)
 MIMD (Multiple Instruction stream, Multiple Data stream)

Instruction stream 1 1 uu uu
Data stream | Hi | Hi

SISD SIMD MISD MIMD

~ ="
) 2

& CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

SIMD Variants

« Vector architectures
e SIMD extensions
e Graphics Processing Units (GPUs)

« SIMD variants exploit data-level parallelism

« Instruction-level parallelism in superscalar processors
* Thread-level parallelism in multicore processors

E CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

Vector architecture

« Computers designed by Seymour Cray starting in the 1970s
 Basic idea:

* Read sets of data elements into "vector registers”

e Operate on those registers

» Disperse the results back info memory

Cray Supercomputer

E CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

DAXPY in MIPS Instructions

\
Example: DAXPY (double precisiona x X +Y) \3\%
L.D FO,a ; load scalar a
DADDIU R4 Rx#512 ; upper bound of what to load
Loop: L.D F20Rx) ;load X[i]
MUL.D F2,F2,FO ;ax X[i]
L.D F4,0(Ry) ; load Y[i]
ADD.D F4,F2,F2 ;ax X[i]+ Y[i]
SD F4,9(Ry) . store into Y[i]
DADDIU Rx,Rx #8 ; increment index to X
DADDIU RyRy#8 ; increment index to Y
SUBBU R20,R4 Rx , compute bound
BNEZ R20,Loop ; check if done

« Requires almost 600 MIPS operations
Ny | | 5

¥ (CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

DAXPY in VMIPS (MIPS with Vector) Instructions \3\%
\

e« ADDV.D : add two vectors
e ADDVS.D : add vector to a scalar
e LV/SV . vector load and vector store from address

« Example: DAXPY (double precision a*X+Y)

L.D FO,a ; load scalar a

LV V1,Rx ; load vector X
MULVS.D V2V1FO ; vector-scalar multiply
LV V3,Ry ; load vector Y
ADDV.D V4,V2,V3 : add

SV Ry,v4 ; store the result

* Requires 6 instructions

=)

A@‘

& CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

The basic structure of a vector architecture, VMIPSX
\

« Eight 64-element vector registers
e All the functional units are vector functional units.

Main memory

Vector | FP add/subtract .—'
load/store

| FP multiply '—»

- FP divide .—~

Integer '—»
Logical .—'

Vector
registers

Scalar
registers

k CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 7

Multiple functional units to improve the performance
\

* (a) can complete one addition per cycle

« (b) can complete four addition per cycle

« The vector register storage is divided across the lanes

ararl |mrs Lane O Lane 1 Lane 2 Lane 3
Fa . v v '
A[a]| [BrE]
ALTY BT [FP add | | FP add FP add \ | FP add
| pipe 0 ipe 1 | pipe 2 nipe 3
wior| lorer / Pif \ / Pif xl | Pif \ / pip .
[L [’ L ' L I '
Y TR
4 L L L
ETEN I B ETE R Vector Vector Vector Wector
reqisters: registers: reqisters: registers:
A3 (B3 elements alements elements elements
0,4, 8, ... 1,5,8,... 2.6, 10, ... 3,711, ...
arz1 w2 spay] |mrey| |arwy| [Brag w I ' T
ar1y| (=11 ara1| |mray| |arsy| |eisi| |zis| (mrs1] mi71]| [Br7) - J ".,1 A _— L]".1 ¥
* * * 4 * 4‘ * * * } FP mul. \ FP mul. FP mul. Y FP mul.
pipe 0 pipe 1 pipe 2 pipe 3
A VRN VAKX YK AN . " "~
L poYy == === | Bl Bkl -
]
Lo : cral il ol i | [=N | b N AN A "y
N e e e e y 1 y 1 1
*
) Elemsfit group . Wector load-store unit
Y] 1]

~ "\ ="
) 8

& CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

SIMD extensions

\
* Media applications operate on data types narrower than Thex
native word size

e Example: disconnect carry chains to "partition” adder
* Implementations:
e Intel MMX (1996)
« Eight 8-bit integer ops or four 16-bit integer ops
« Streaming SIMD Extensions (SSE) (1999)
« Eight 16-bit integer ops
« Four 32-bit integer/fp ops or two 64-bit integer/fp ops
« Advanced Vector Extensions (AVX 2010)
« Four 64-bit integer/fp ops
« 256 bit vectors -> 512 -> 1024
« Operands must be consecutive and aligned memory locations

~ ="
) :

& CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

FE (CER30F) hin

Course number: CSC.T363

AN
AEa—3T7 —FTIF~
Computer Architecture

(@)

14, %)LF278wyY JILFI7T
Multiprocessors and Multicore

www.arch.cs.titech.ac.jp/lecture/CA/

&

Room No.W321 aalk— FHRIFR
Tue 13:20-16:20, Fri 13:20-14:50 Kenji Kise, Department of Computer Science

Kise _at_ c.titech.ac.jp 10

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

T—XTO0FVvDELGLHIRRIZKEHDEE

\

o FlynnlZ&kbaRRET—2DHRNITTEE L1515 E 1%
D538 (19665)
« SISD (Single Instruction stream, Single Data stream)

« SIMD (Single Instruction stream, Multiple Data stream)
« MISD (Multiple Instruction stream, Single Data stream)
 MIMD (Multiple Instruction stream, Multiple Data stream)

) 00 i

MIMD

5= J S S S

& CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 11

Multi-threading

[) Mu I 1' i —Th r‘ead i ng Thread 1 OS context switch code Thread 2
processor oo EEiElEHEE SeCHEERE
Processor
» Simultaneous L

m u l 1- i "'1- h r‘ead i n9 (S M T) Thread 1 Thread 2 Thread 3 Thread 1

processor s JIIENEERRE ARG

(CMI) Cache wiss Cacle niss T Cache nass T
C)
Fine-grained
errnielf (ol I [L

(FMT)

D)
Simultaneous
Multithreaded
(SMT)
Execution ﬁ
Units Time

Figure 1. Multithreaded Execution with Increasing Levels of TLP Hardware Support

E CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

The Free Lunch Is Over
\

» Tuning, Optimization, and Parallel processing (Concurrency)

Free Lunch

Programmers haven't The traditional approach

really had to worry to application

much about performance was to

performance or simply wait for the next

concurrency because generation of processor;

of Moore's Law most software
developers did not need

| to invest in performance
tuning, and enjoyed a
Why we did not see 4GHz “free lunch” from
processors in Market? hardware
improvements.
@n The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005
CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 13

Intel Skylake-X, Core i9-7980XE, 2017

™

18 core

CORE i9

X-series

A@‘

\

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

14

Multicore, Shared Memory System

Main Memory (DRAM) /o

« Caches are used to reduce latency and to lower network traffic

e Must provide hardware to ensure that caches and memory are consistent
(cache coherency)

* Must provide a hardware mechanism to support process (thread)
synchronization

%SC.T%ﬁ Computer Architecture, Department of Computer Science, TOKYO TECH

NoC and Many-core
e

V\\

* NoC requirements: low latency, high throughput, low cost

* Focus on mesh topology

 Packet based data transmission via NoC routers and XY-

dimension order routing

PM: Processing Module or Core,
R: Router

packet
(tag + data)

Simulating Ocean Currents

(a) Cross sections
* Model as two-dimensional grids
« Discretize in space and time
« finer spatial and temporal resolution => greater accuracy
* Many different computations per time step
« Concurrency across and within grid computations
e Static and reqular

L=
dap‘red from Paralle/ Computer Architecture, David E. Culler

¥ (CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

/

\

00000000 O0O0

00000000 O0O0

O0O0O0O0O000OO0O0

00000000 O0O0

00000000 O0O0

O0O0O00000O0O0

00000000 O0O0

0000000 O0O0O0

00000000 O0O0

00000000 O0O0

(b) Spatial discretization of a cross section

17

Grid Solver

Expr ession for updating each interior point:

O O O O
O O O O

Alij1=0.2 x (Alijl+ A[li,j— 1]+ Ali- 1,j] +
Alij +1]+ Afi+ 1, j])

OO0 0O O0O0O0OO0OO0O0
O
OOOOO~>*<~OOOO

OO0 O OO0

OO0 0O O0OO0O0OO0OO0O0
OO0 0O OO0OO0O0O0O0
O OO0 OO0OO0OO0OO0O0
OO0 0O OO0OO0O0O0O0

OO0 O O0O0OO0OO0O0
OO0 0O O0OO0OO0O0O0O0
OO0 0O O

» (Gauss-Seidel (near-neighbor) sweeps to convergence

interior n-by-n points of (n+2)-by-(n+2) updated in each sweep
updates done in-place in grid

difference from previous value computed

accumulate partial diffs into global diff at end of every sweep
check if it has converged to within a tfolerance parameter

~
A=
@ Adapted from Paralle/ Computer Architecture, David E. Culler
¥ (CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

18

Sequential Version

1. int n; [*size of matrix: (n + 2-by-n + 2) elements*/
2. float **A, diff = 0O;

3. main(Q)

4. begin

5. read(n) ; [*read input parameter: matrix size*/
6 A « malloc (a 2-d array of size n + 2 by n + 2 doubles);
7. initialize(A); [*initialize the matrix A somehow*/
8. Solve (A); /[*call the routine to solve equation*/
9. end main

10. procedure Solve (A) /*solve the equation system™*/

11. float **A; [*Ais an (n + 2)-by-(n + 2) array*/
12. begin

13. int 1, jJ, done = 0O;
14. float diff = 0, temp;

15. while (!done) do [*outermost loop over sweeps*/

16. diff = O; [*initialize maximum difference to 0*/
17. for 1 «< 1 to n do /*sweep over nonborder points of grid*/
18. for J «< 1 to n do

19. temp = A[1,]]; [*save old value of element*/

20. A[i,j] <« 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +

21. A[1,3+1] + A[1+1,3]); /*compute average*/

22. diff += abs(A[1,J] - temp);

23. end for

24. end for

25. it (diff/(n*n) < TOL) then done = 1;

26. end while

=D 27.end procedure
@ Adapted from Paralle/ Computer Architecture, David E. Culler

¥ (CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

Exploit Application Knowledge

. Reorder grid traversal: red-black ordering

ccecss
ccecde

@ Red point

@ Black point

« Different ordering of updates:

may converge quicker or slower

« Red sweep and black sweep are each fully parallel:
* Global synch between them (conservative but convenient)

e QOcean uses red-black

« We use simpler, asynchronous one to illustrate
* no red-black, simply ignore dependences within sweep

 parallel program nondeterministic

=2
@ Adapted from Paralle/ Computer Architecture, David E. Culler

¥ (CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

20

Assignment

block assignment

OO0C|le® |0 @ 0|0 OO
OO0OC|le® |0 @ 0|O O O
OO0OC|le® @€|®@ @ |0 O O
OO0C|le® |0 @ 0|0 O O
OO0C|le® |0 @ 0|0 O O
OO0OC|le@® |0 @ 0|O O O
OO0OC|le® |0 @ |0 O O
OO0C|le® |0 & 0|]O O O
OO0OC|le® ®@|0 @ 0|0 O O
OO0OC|le® |0 @ |0 O O

. Static assignment: decomposition into rows L iJ

- block assignment of rows: Row / is assigned to process Lp

- cyclic assignment of rows: process / is assighed rows /, /+p,

- Dynamic assighment
 get a row index, work on the row, get a hew row, ..
 What is the mechanism?

__* Concurrency? Volume of Communication?

A=
@ Adapted from Paralle/ Computer Architecture, David E. Culler
¥ (CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

21

Shared Address Space Solver

» Single Program Multiple Data (SPMD)

Processes
Solve Solve Solve Solve

R

Sweep

Tt 1
S

« Assignment controlled by values of variables used as loop bounds

=2
@ Adapted from Paralle/ Computer Architecture, David E. Culler

\

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

22

Parallel program in SPMD model

10. procedure Solve(A)
11. float **A; /*A is entire n+2-by-n+2 shared array,
as in the sequential program*/

12. Dbegin
13. int 1,jJ, pid, done = O;
14. float temp, mydiff = O; [*private variables*/
1l4a. int mymin = 1 + (pid * n/nprocs); /*assume that nis exactly divisible by*/
14b. Iint mymax = mymin + n/nprocs - 1 /*nprocs for simplicity here*/
15. while (!'done) do /*outer loop sweeps*/
16. mydiff = diff = O; /*set global diff to O (okay for all to do it)*/
16a. BARRIER(barl, nprocs); /*ensure all reach here before anyone modifies diff*/
17. for 1 <« mymin to mymax do [*for each of my rows*/
18. for j «< 1 to n do /*for all nonborder elements in that row*/
19. temp = A[1,j];
20. ALi.31 = 0.2 * (ALv.3]1 + AL1,5-11 + A[i-1,35] +
21. A[i,jJ+1] + A[1+1,5D);
22. mydiff += abs(A[1,j] - temp);
23. endfor
24 . endfor
25a. LOCK(diff_lock); [*update global diff if necessary*/
25b. diff += mydiff;
25c. UNLOCK(diff_lock);
25d. BARRIER(barl, nprocs); /*ensure all reach here before checking if done*/
25e. it (diff/(n*n) < TOL) then done = 1; /*check convergence; all get
same answer*/
25fF. BARRIER(barl, nprocs);
26. endwhile

27. end procedure

=2
dapTed from Parallel Computer Architecture, David E. Culler 23

¥ (CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

Kalray Multi-Purpose Processor Architecture

l:’ MPPA
b i —MANYCORE

Kalray MPPA®-256 Processor with CMOS 28nm TSMC

256 VLIW processing engine cores + 32 VLIW resource management cores

= High processing performance
700 GOPS - 230 GFLOPS SP

= Low power consumption
= High execution predictability

= High-level programming models

Available since November 2012 = PCI Gen3, Ethernet 10G, NoCX

2013 — Kalray S5 Al Rigihs Resarved MUCaCoS 2013 4

;"@‘

& CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

24

Epiphany-V: A 1024 processor 64-bit RISC System-On-Chip

<

RISC e~ RISC
cpy NOC CPU

NOC

MEMORY MEMORY

RISC o RISC
cPu CPU

NOC

MEMORY MEMORY

Function

Value (mm~2)

Share of Total Die Area

SRAM 621 53.3%
Register File 15.1 12.9%
Summary of Epiphany-V features: FPU 118 10.1%
. NOC 12.1 10.3%
« 1024 64-bit RISC processors IO Logic 65 5 6%
e 64-bit memory architecture ' '
e 64/32-bit IEEE floating point support “Other” Core Stuif 5.1 4.4%
e 6G4MB of distributed on-chip memory IO Pads 3.9 3.3%
e 1024 programmable I/0 signals Always on Logic 0.66 0.6%

e Three 136-bit wide 2D mesh NOCs
« 2052 Independent Power Domains
¢ Support for up to 1 billion shared memory processors
» Binary compatibility with Epiphany III/IV chips

Table 5: Epiphany-V Area Breakdown

« Custom ISA extensions for deep learning, communication, and cryptography

SC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

\

Computer Architecture & Design

%SC.T%ﬁ Computer Architecture, Department of Computer Science, TOKYO TECH

26

