
CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 1

コンピュータアーキテクチャ
Computer Architecture

13. ベクタ、SIMDにおけるデータレベル並列性
Data-Level Parallelism in Vector and SIMD

Ver. 2018-11-14a2018年度（平成30年度）版

Course number: CSC.T363

www.arch.cs.titech.ac.jp/lecture/CA/
Room No.W321
Tue 13:20-16:20, Fri 13:20-14:50

吉瀬 謙二 情報工学系
Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 2

アーキテクチャの異なる視点による分類

• Flynnによる命令とデータの流れに注目した並列計算機

の分類（1966年）

• SISD (Single Instruction stream, Single Data stream)
• SIMD (Single Instruction stream, Multiple Data stream)
• MISD (Multiple Instruction stream, Single Data stream)
• MIMD (Multiple Instruction stream, Multiple Data stream)

Instruction stream

Data stream
SISD SIMD MISD MIMD

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 3

SIMD Variants

• Vector architectures
• SIMD extensions
• Graphics Processing Units (GPUs)

• SIMD variants exploit data-level parallelism
• Instruction-level parallelism in superscalar processors
• Thread-level parallelism in multicore processors

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 4

Vector architecture

• Computers designed by Seymour Cray starting in the 1970s
• Basic idea:

• Read sets of data elements into “vector registers”
• Operate on those registers
• Disperse the results back into memory

Cray Supercomputer

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 5

DAXPY in MIPS Instructions

Example: DAXPY (double precision a x X + Y)
L.D F0,a ; load scalar a
DADDIU R4,Rx,#512 ; upper bound of what to load

Loop: L.D F2,0(Rx) ; load X[i]
MUL.D F2,F2,F0 ; a x X[i]
L.D F4,0(Ry) ; load Y[i]
ADD.D F4,F2,F2 ; a x X[i] + Y[i]
S.D F4,9(Ry) ; store into Y[i]
DADDIU Rx,Rx,#8 ; increment index to X
DADDIU Ry,Ry,#8 ; increment index to Y
SUBBU R20,R4,Rx ; compute bound
BNEZ R20,Loop ; check if done

• Requires almost 600 MIPS operations

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 6

DAXPY in VMIPS (MIPS with Vector) Instructions

• ADDV.D : add two vectors
• ADDVS.D : add vector to a scalar
• LV/SV : vector load and vector store from address

• Example: DAXPY (double precision a*X+Y)
L.D F0,a ; load scalar a
LV V1,Rx ; load vector X
MULVS.D V2,V1,F0 ; vector-scalar multiply
LV V3,Ry ; load vector Y
ADDV.D V4,V2,V3 ; add
SV Ry,V4 ; store the result

• Requires 6 instructions

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 7

The basic structure of a vector architecture, VMIPS

• Eight 64-element vector registers
• All the functional units are vector functional units.

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 8

Multiple functional units to improve the performance

• (a) can complete one addition per cycle
• (b) can complete four addition per cycle
• The vector register storage is divided across the lanes

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 9

SIMD extensions

• Media applications operate on data types narrower than the
native word size
• Example: disconnect carry chains to “partition” adder

• Implementations:
• Intel MMX (1996)

• Eight 8-bit integer ops or four 16-bit integer ops
• Streaming SIMD Extensions (SSE) (1999)

• Eight 16-bit integer ops
• Four 32-bit integer/fp ops or two 64-bit integer/fp ops

• Advanced Vector Extensions (AVX 2010)
• Four 64-bit integer/fp ops
• 256 bit vectors -> 512 -> 1024

• Operands must be consecutive and aligned memory locations

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 10

コンピュータアーキテクチャ
Computer Architecture

14. マルチプロセッサ、マルチコア
Multiprocessors and Multicore

Ver. 2018-11-14a2018年度（平成30年度）版

Course number: CSC.T363

www.arch.cs.titech.ac.jp/lecture/CA/
Room No.W321
Tue 13:20-16:20, Fri 13:20-14:50

吉瀬 謙二 情報工学系
Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 11

アーキテクチャの異なる視点による分類

• Flynnによる命令とデータの流れに注目した並列計算機

の分類（1966年）

• SISD (Single Instruction stream, Single Data stream)
• SIMD (Single Instruction stream, Multiple Data stream)
• MISD (Multiple Instruction stream, Single Data stream)
• MIMD (Multiple Instruction stream, Multiple Data stream)

MIMD

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 12

Multi-threading

• Multi-threading
processor

• Simultaneous
multi-threading (SMT)
processor

http://www.realworldtech.com/alpha-ev8-smt/

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 13

The Free Lunch Is Over

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005

• Tuning, Optimization, and Parallel processing (Concurrency)

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 14

Intel Skylake-X, Core i9-7980XE, 2017

• 18 core

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 15

Multicore, Shared Memory System

• Caches are used to reduce latency and to lower network traffic
• Must provide hardware to ensure that caches and memory are consistent

(cache coherency)
• Must provide a hardware mechanism to support process (thread)

synchronization

System

Main Memory (DRAM)

Chip

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

Network (NoC)

I/O

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 16

NoC and Many-core

• NoC requirements: low latency, high throughput, low cost
• Focus on mesh topology

• Packet based data transmission via NoC routers and XY-
dimension order routing

R

PM
0, 2

R

PM
1, 2

R

PM
2, 2

R

PM
3, 2

R

PM
0, 1

R

PM
1, 1

R

PM
2, 1

R

PM
3, 1

R

PM
0, 0

R

PM
1, 0

R

PM
2, 0

R

PM
3, 0

R

PM
0, 3

R

PM
1, 3

R

PM
2, 3

R

PM
3, 3

PM: Processing Module or Core,
R: Router

packet
(tag + data)

x

y

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 17

Simulating Ocean Currents

• Model as two-dimensional grids
• Discretize in space and time
• finer spatial and temporal resolution => greater accuracy

• Many different computations per time step
• Concurrency across and within grid computations

• Static and regular

(a) Cross sections (b) Spatial discretization of a cross section

Adapted from Parallel Computer Architecture, David E. Culler

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 18

Grid Solver

• Gauss-Seidel (near-neighbor) sweeps to convergence
• interior n-by-n points of (n+2)-by-(n+2) updated in each sweep
• updates done in-place in grid
• difference from previous value computed
• accumulate partial diffs into global diff at end of every sweep
• check if it has converged to within a tolerance parameter

A[i,j] = 0.2 (A [i,j] + A [i,j – 1] + A [i – 1, j] +
A[i,j + 1] + A [i + 1, j])

Expr ession for updating each interior point:

Adapted from Parallel Computer Architecture, David E. Culler

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 19

1. int n; /*size of matrix: (n + 2-by-n + 2) elements*/
2. float **A, diff = 0;

3. main()
4. begin
5. read(n) ; /*read input parameter: matrix size*/
6. A malloc (a 2-d array of size n + 2 by n + 2 doubles);
7. initialize(A); /*initialize the matrix A somehow*/
8. Solve (A); /*call the routine to solve equation*/
9. end main

10. procedure Solve (A) /*solve the equation system*/
11. float **A; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, done = 0;
14. float diff = 0, temp;
15. while (!done) do /*outermost loop over sweeps*/
16. diff = 0; /*initialize maximum difference to 0*/
17. for i 1 to n do /*sweep over nonborder points of grid*/
18. for j 1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j] 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. diff += abs(A[i,j] - temp);
23. end for
24. end for
25. if (diff/(n*n) < TOL) then done = 1;
26. end while
27. end procedure

Sequential Version

Adapted from Parallel Computer Architecture, David E. Culler

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 20

Exploit Application Knowledge

• Different ordering of updates: may converge quicker or slower
• Red sweep and black sweep are each fully parallel:
• Global synch between them (conservative but convenient)
• Ocean uses red-black
• We use simpler, asynchronous one to illustrate

• no red-black, simply ignore dependences within sweep
• parallel program nondeterministic

Red point

Black point

• Reorder grid traversal: red-black ordering

Adapted from Parallel Computer Architecture, David E. Culler

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 21

Assignment

• Static assignment: decomposition into rows
• block assignment of rows: Row i is assigned to process
• cyclic assignment of rows: process i is assigned rows i, i+p,

...
– Dynamic assignment

• get a row index, work on the row, get a new row, ...
• What is the mechanism?
• Concurrency? Volume of Communication?

i
p

P0

P1

P2

P4

block assignment

Adapted from Parallel Computer Architecture, David E. Culler

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 22
22

Shared Address Space Solver

• Assignment controlled by values of variables used as loop bounds

• Single Program Multiple Data (SPMD)

Sweep

Test Convergence

Processes

Solve Solve Solve Solve

Adapted from Parallel Computer Architecture, David E. Culler

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 23

Parallel program in SPMD model
10. procedure Solve(A)
11. float **A; /*A is entire n+2-by-n+2 shared array,
 as in the sequential program*/
12. begin
13. int i,j, pid, done = 0;
14. float temp, mydiff = 0; /*private variables*/
14a. int mymin = 1 + (pid * n/nprocs); /*assume that n is exactly divisible by*/
14b. int mymax = mymin + n/nprocs - 1 /*nprocs for simplicity here*/

15. while (!done) do /*outer loop sweeps*/
16. mydiff = diff = 0; /*set global diff to 0 (okay for all to do it)*/
16a. BARRIER(bar1, nprocs); /*ensure all reach here before anyone modifies diff*/
17. for i mymin to mymax do /*for each of my rows*/
18. for j 1 to n do /*for all nonborder elements in that row*/
19. temp = A[i,j];
20. A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]);
22. mydiff += abs(A[i,j] - temp);
23. endfor
24. endfor
25a. LOCK(diff_lock); /*update global diff if necessary*/
25b. diff += mydiff;
25c. UNLOCK(diff_lock);
25d. BARRIER(bar1, nprocs); /*ensure all reach here before checking if done*/
25e. if (diff/(n*n) < TOL) then done = 1; /*check convergence; all get
 same answer*/
25f. BARRIER(bar1, nprocs);
26. endwhile
27. end procedure

Adapted from Parallel Computer Architecture, David E. Culler

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 24

Kalray Multi-Purpose Processor Architecture

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 25

Epiphany-V: A 1024 processor 64-bit RISC System-On-Chip

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 26

Computer Architecture & Design

