
CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 1

コンピュータアーキテクチャ
Computer Architecture

10. 仮想記憶、セキュリティ
Virtual Memory and Security

Ver. 2018-11-05a2018年度（平成30年度）版

Course number: CSC.T363

www.arch.cs.titech.ac.jp/lecture/CA/
Room No.W321
Tue 13:20-16:20, Fri 13:20-14:50

吉瀬 謙二 情報工学系
Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 2

A Typical Memory Hierarchy

Second
Level
Cache

(SRAM)

Control

Datapath

Secondary
Memory
(Disk)

On-Chip Components

R
egFile

Main
Memory
(DRAM)D

ata
C

ache
Instr

C
ache

ITLB
D

TLB

Speed (%cycles): ½’s 1’s 10’s 100’s 1,000’s
Size (bytes): 100’s K’s 10K’s M’s G’s to T’s

Cost: highest lowest

 By taking advantage of the principle of locality （局所性）

 Present much memory in the cheapest technology
 at the speed of fastest technology

TLB: Translation Lookaside Buffer

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 3

Example of 32-bit memory space (4GB)

00000000 00000000 00000000 000000002 = 010

11111111 11111111 11111111 111111112 = 4,294,967,296 - 110

0x00000000

0xFFFFFFFF

2GB Memory !

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 4

Virtual Memory （仮想記憶）

• Use main memory as a “cache” for
secondary memory
• Provides the ability to easily run

programs larger than the size of
physical memory

• Simplifies loading a program for
execution by providing for code
relocation (i.e., the code can be loaded
anywhere in main memory)

• Allows efficient and safe sharing of
memory among multiple programs

• Security, memory protection
• control memory access rights

Main memory

Secondary memory (disk)

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 5

Virtual Memory

• What makes it work? – again the Principle of
Locality
• A program is likely to access a relatively small

portion of its address space during any period
of time

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 6

Virtual Memory

• Each program is compiled into its own
address space – a “virtual address (VA)”
space

• Physical address (PA) for the access of
physical devices
• During run-time each

virtual address, VA must be translated
to a physical address, PA

Main memory

Secondary memory (disk)

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 7

Virtual Memory

Main memory

(2GB)

Secondary memory (disk)

(1024GB)

VA for 4GB memory
of program A

VA for 4GB memory
of program B

VA for 4GB memory
of program C

Virtual address world Physical address world

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 8

Two Programs Sharing Physical Memory

Program A’s page table (virtual address space)

main memory

 A program’s address space is divided into pages (all one
fixed size, typical 4KB) or segments (variable sizes)
 The starting location of each page (either in main memory or in

secondary memory) is contained in the program’s page table

Program B’s page table

4KB page
HDD

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 9

Address Translation

Virtual Address (VA)

Page offsetVirtual page number
31 30 . . . 12 11 . . . 0

Page offsetPhysical page number

Physical Address (PA)
29 . . . 12 11 0

Translation

• So each memory request first requires an address
translation from the virtual space to the physical space

 A virtual address is translated to a physical address by a
combination of hardware and software

Assume 4KB page size

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 10

Address Translation Mechanisms

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

Page Table in main memory

Offset

Physical page # Offset

page fault :
page is not in the main memoryVA

PA

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 11

Virtual Addressing, the hardware fix

• Thus it may take an extra memory access to translate a virtual
address to a physical address

CPU
Core

Trans-
lation Cache Main

Memory

VA PA miss

hit
data

 This makes memory (cache)
accesses very expensive
(if every access was really two
accesses)

 What’s the solution ?

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 12

Virtual Addressing, the hardware fix

 The hardware fix is to use a Translation Lookaside
Buffer (TLB) （アドレス変換バッファ）

 a small cache that keeps track of recently used
address mappings to avoid having to do a page table
lookup

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 13

Making Address Translation Fast

Physical page base addr
Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

1
1
1
0
1

Tag Physical page base addrV
TLB (Translation Lookaside Buffer)

Page Table
(in physical memory)

1M entries

128 entries

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 14

MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 15

Translation Lookaside Buffers (TLBs)

• Just like any other cache, the TLB can be organized as
fully associative, set associative, or direct mapped

V Virtual Page # Physical Page #

• TLB access time is typically smaller than cache access
time (because TLBs are much smaller than caches)
• TLBs are typically not more than 128 to 256 entries even

on high end machines

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 16

A TLB in the Memory Hierarchy

• A TLB miss – is it a TLB miss or a page fault ?
• If the page is in main memory, then the TLB miss can be

handled (in hardware or software) by loading the translation
information from the page table into the TLB

• Takes 100’s of cycles to find and load the translation info into the TLB
• If the page is not in main memory, then it’s a true page fault

• Takes 1,000,000’s of cycles to service a page fault

CPU
Core

TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Translation
(page table)

hit

miss

¾ t¼ t

HDD

page
fault

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 17

A TLB in the Memory Hierarchy

• page fault : page is not in physical memory
• TLB misses are much more frequent than true page faults

CPU
Core

TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Translation
(page table)

hit

miss

¾ t¼ t

HDD

page
fault

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 18

Two Machines’ TLB Parameters

Intel P4 AMD Opteron

TLB organization 1 TLB for instructions and
1TLB for data
Both 4-way set associative
Both use ~LRU
replacement

Both have 128 entries

TLB misses handled in
hardware

2 TLBs for instructions and 2
TLBs for data
Both L1 TLBs fully associative
with ~LRU replacement
Both L2 TLBs are 4-way set
associative with round-robin
LRU
Both L1 TLBs have 40 entries
Both L2 TLBs have 512 entries
TBL misses handled in
hardware

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 19

TLB Page
Table

Cache Possible? Under what circumstances?

Hit Hit Hit

Hit Hit Miss

Miss Hit Hit

Miss Hit Miss

Miss Miss Miss

Hit Miss Miss/
Hit

Miss Miss Hit

Yes – what we want!

Yes – although the page table is not
checked if the TLB hits

Yes – TLB miss, PA in page table

Yes – TLB miss, PA in page table, but data
not in cache

Yes – page fault
Impossible – TLB translation not possible if
page is not present in memory

Impossible – data not allowed in cache if
page is not in memory

TLB Event Combinations

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 20

Why Not a Virtually Addressed Cache?

• A virtually addressed cache would only require address
translation on cache misses

data

CPU Trans-
lation

Cache

Main
Memory

VA

hit

PA

but
 Two different virtual addresses can map to the same physical

address (when processes are sharing data),
 Two different cache entries hold data for the same physical address

– synonyms （別名）

 Must update all cache entries with the same physical address or
the memory becomes inconsistent

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 21

The Hardware/Software Boundary

• What parts of the virtual to physical address translation
is done by or assisted by the hardware?
• Translation Lookaside Buffer (TLB) that caches the recent

translations
• TLB access time is part of the cache hit time
• May cause an extra stage in the pipeline for TLB access

• Page table storage, fault detection and updating
• Page faults result in interrupts (precise) that are then

handled by the OS
• Hardware must support (i.e., update appropriately) Dirty and

Reference bits (e.g., ~LRU) in the Page Tables

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 22

A Typical Memory Hierarchy

Second
Level
Cache

(SRAM)

Control

Datapath

Secondary
Memory
(Disk)

On-Chip Components

R
egFile

Main
Memory
(DRAM)D

ata
C

ache
Instr

C
ache

ITLB
D

TLB

Speed (%cycles): ½’s 1’s 10’s 100’s 1,000’s
Size (bytes): 100’s K’s 10K’s M’s G’s to T’s

Cost: highest lowest

 By taking advantage of the principle of locality （局所性）

 Present much memory in the cheapest technology
 at the speed of fastest technology

TLB: Translation Lookaside Buffer

