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A Typical Memory Hierarchy
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Speed (%cycles): ½’s             1’s                   10’s                    100’s                  1,000’s
Size (bytes):    100’s   K’s                   10K’s                      M’s                  G’s to T’s

Cost:       highest                                                                                     lowest

 By taking advantage of the principle of locality （局所性）

 Present much memory in the cheapest technology
 at the speed of fastest technology

TLB: Translation Lookaside Buffer
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Example of 32-bit memory space (4GB)

00000000 00000000 00000000 000000002 = 010

11111111 11111111 11111111 111111112  = 4,294,967,296 - 110

0x00000000

0xFFFFFFFF

2GB Memory !
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Virtual Memory （仮想記憶）

• Use main memory as a “cache” for 
secondary memory
• Provides the ability to easily run 

programs larger than the size of 
physical memory

• Simplifies loading a program for 
execution by providing for code 
relocation (i.e., the code can be loaded 
anywhere in main memory)

• Allows efficient and safe sharing of 
memory among multiple programs

• Security, memory protection
• control memory access rights

Main memory

Secondary memory (disk)
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Virtual Memory

• What makes it work?  – again the Principle of 
Locality
• A program is likely to access a relatively small 

portion of its address space during any period 
of time



CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 6

Virtual Memory

• Each program is compiled into its own 
address space – a “virtual address (VA)”
space

• Physical address (PA) for the access of  
physical devices
• During run-time each 

virtual address, VA must be translated 
to a physical address, PA

Main memory

Secondary memory (disk)
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Virtual Memory

Main memory

(2GB)

Secondary memory (disk)

(1024GB)

VA for 4GB memory 
of program A

VA for 4GB memory 
of program B

VA for 4GB memory
of program C

Virtual address world Physical address world
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Two Programs Sharing Physical Memory

Program A’s page table (virtual address space)

main memory

 A program’s address space is divided into pages (all one 
fixed size, typical 4KB) or segments (variable sizes)
 The starting location of each page (either in main memory or in 

secondary memory) is contained in the program’s page table

Program B’s page table

4KB page
HDD
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Address Translation

Virtual Address (VA)

Page offsetVirtual page number
31  30                          .  .  .                                      12  11          .  .  .          0

Page offsetPhysical page number

Physical Address (PA)
29                        .  .  .                               12  11                            0

Translation

• So each memory request first requires an address 
translation from the virtual space to the physical space

 A virtual address is translated to a physical address by a 
combination of hardware and software

Assume 4KB page size
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Address Translation Mechanisms

Physical page
base addr

Main memory

Disk storage

Virtual page #
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1
1
1
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Page Table in main memory

Offset

Physical page # Offset

page fault : 
page is not in the main memoryVA

PA
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Virtual Addressing, the hardware fix

• Thus it may take an extra memory access to translate a virtual 
address to a physical address

CPU
Core

Trans-
lation Cache Main

Memory

VA PA miss

hit
data

 This makes memory (cache) 
accesses very expensive
(if every access was really two
accesses)

 What’s the solution ?
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Virtual Addressing, the hardware fix

 The hardware fix is to use a Translation Lookaside 
Buffer (TLB) （アドレス変換バッファ）

 a small cache that keeps track of recently used 
address mappings to avoid having to do a page table
lookup
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Making Address Translation Fast

Physical page base addr
Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

1
1
1
0
1

Tag Physical page base addrV
TLB (Translation Lookaside Buffer)

Page Table
(in physical memory)

1M entries

128 entries
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MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30       . . .         13 12  11     . . .        2  1  0
Byte 
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit
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Translation Lookaside Buffers (TLBs)

• Just like any other cache, the TLB can be organized as 
fully associative, set associative, or direct mapped

V    Virtual Page #          Physical Page #   

• TLB access time is typically smaller than cache access 
time (because TLBs are much smaller than caches)
• TLBs are typically not more than 128 to 256 entries even 

on high end machines
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A TLB in the Memory Hierarchy

• A TLB miss – is it a TLB miss  or a page fault ? 
• If the page is in main memory, then the TLB miss can be 

handled (in hardware or software) by loading the translation 
information from the page table into the TLB

• Takes 100’s of cycles to find and load the translation info into the TLB
• If the page is not in main memory, then it’s a true page fault

• Takes 1,000,000’s of cycles to service a page fault

CPU
Core

TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Translation
(page table)

hit

miss

¾ t¼  t

HDD

page 
fault
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A TLB in the Memory Hierarchy

• page fault : page is not in physical memory
• TLB misses are much more frequent than true page faults
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Two Machines’ TLB Parameters

Intel P4 AMD Opteron

TLB organization 1 TLB for instructions and 
1TLB for data
Both 4-way set associative
Both use ~LRU 
replacement                         

Both have 128 entries

TLB misses handled in 
hardware

2 TLBs for instructions and 2 
TLBs for data
Both L1 TLBs fully associative 
with ~LRU replacement
Both L2 TLBs are 4-way set 
associative with round-robin 
LRU
Both L1 TLBs have 40 entries
Both L2 TLBs have 512 entries
TBL misses handled in 
hardware
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TLB Page 
Table

Cache Possible?  Under what circumstances?

Hit Hit Hit

Hit Hit Miss

Miss Hit Hit

Miss Hit Miss

Miss Miss Miss

Hit Miss Miss/
Hit

Miss Miss Hit

Yes – what we want!

Yes – although the page table is not 
checked if the TLB hits

Yes – TLB miss, PA in page table

Yes – TLB miss, PA in page table, but data
not in cache

Yes – page fault
Impossible – TLB translation not possible if
page is not present in memory

Impossible – data not allowed in cache if 
page is not in memory

TLB Event Combinations
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Why Not a Virtually Addressed Cache?

• A virtually addressed cache would only require address 
translation on cache misses

data

CPU Trans-
lation

Cache

Main
Memory

VA

hit

PA

but
 Two different virtual addresses can map to the same physical 

address (when processes are sharing data), 
 Two different cache entries hold data for the same physical address 

– synonyms （別名）

 Must update all cache entries with the same physical address or 
the memory becomes inconsistent
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The Hardware/Software Boundary

• What parts of the virtual to physical address translation 
is done by or assisted by the hardware?
• Translation Lookaside Buffer (TLB) that caches the recent 

translations
• TLB access time is part of the cache hit time
• May cause an extra stage in the pipeline for TLB access

• Page table storage, fault detection and updating
• Page faults result in interrupts (precise) that are then 

handled by the OS
• Hardware must support (i.e., update appropriately) Dirty and 

Reference bits (e.g., ~LRU) in the Page Tables
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A Typical Memory Hierarchy
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 By taking advantage of the principle of locality （局所性）

 Present much memory in the cheapest technology
 at the speed of fastest technology

TLB: Translation Lookaside Buffer


