o
4. {ap}p2 _, is an arbitrary sequence such that a_; =0, a;, € (0,1] (k=0,1,...), and Z ap =
k=0

0.
k=1 o0
Then the pair of sequences { H (1-— ai)} and {¢g(x)}72, recursively defined as
i=—1 k=0
@) = (1= an)ow(@) +ax [ (i) + (VI wp).@ = wi) + Sl — yil3]

is an estimate sequence.

Proof:

Let us prove by induction in k. For k =0, ¢o(x) = (1 — (1 — a—1)) f(z) + (1 — a—1)po(x) since
a_1 = 0. Suppose that the induction hypothesis is valid for any index equal or smaller than k.
Since f € Si(R”),

brii@) = (1= an)on(@) +an [ (i) + (VFyp),@ — i) + Sl — yil3]
< (11— ag)on(x) + arf(x)
k—1 k—1
= (1 —(—ap) J[JOO - ai)) flx) + (1= ay) ((bk(m) - <1 - JJa- ai)) f(iﬁ))
1=—1 i=—1
k—1 k—1
< (1 ~(-ap) [T~ a») f@)+ (1 —ay) [T (1 = a)eo(a)

Now, it remains to show that Hi:}l(l — ;) — 0. This is equivalent to show that log [TF=1, (1 -
a;) — —oo. Using the inequality log(l — o) < —a for a € (—o0, 1), we have

k—1 k-1 k-1
log H(l—ai): Z log(l —a;) < — Z a; — —00

i=—1 i=—1 i=—1

due to our assumption. 1

Lemma 9.4 Let f : R" — R be an arbitrary continuously differentiable function. Also let ¢ € R,
p=>0,7% >0, vy € R", {y,}72,, and {a}, given arbitrarily sequences such that a_; = 0,
ar € (0,1] (k= 0,1,...). In the special case of p = 0, we further assume that v > 0 and
ar <1 (k=0,1,...). Let ¢o(x) = ¢} + 2|l — vo||3. If we define recursively ¢r1(x) such as the
previous lemma:

Ora1(@) = (1= a)on(@) + a [Fyp) + (Vi) @ —yp) + Sl —uill3]

then ¢p41(x) preserve the canonical form

VE+1

Pry1(x) = dpyq + THﬂC — Vg3 (12)
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for

Yerr = (1 —ap)y + arp,
1
V1 = —[(1 — ap) vk + arpyy, — 'V F(ye)l,
Vi+1
* * O‘i 2
$ri1 = (1 —op)dy, +arf(yg) — IV F(ye)ls

2Yk41
+Oék(1 — oak)’yk

7]
(Gl — vl + (VA ) o - i)

Proof:
We will use again the induction hypothesis in k. Note that V2¢>0(as) = v9I. Now, for any k£ > 0,

Vi1 (x) = (1 — ) V() + o = (1 — ap)vie + awp) I = v 1.

Therefore, ¢r+1(x) is a quadratic function of the form (12). Also, y4+1 > 0 since p > 0 and
ar >0 (k=0,1,...); or if u =0, we assumed that v > 0 and ay, € (0,1) (k=0,1,...).
From the first-order optimality condition

Vo) = (1—-ap)Vey(x)+ 'V F(y,) + arp( — yy)
= (1 —ap)w(®—vi) + axVF(y) + app(z —y;) = 0.

Thus,

1
x=vp1 = — [(1 — o) i + appyy — ar'VF(y)]
Vk+1

is the minimal optimal solution of ¢ ().
Finally, from what we proved so far and from the definition

Ph1(Yy) = Pryr + Sy — vl
= (1 —ap)or(yr) + arf(yz) (13)
= (1—ar) (o5 + Fllyr — vrl3) + anf(yp)-
Now,
1
Vi1 — Yp = — (1 — ar)v(vk — yi) — 'V f(y)].-
Ye+1
Therefore,
Titlvpr —yill3 = ﬁ [(1 = ar)* 3w — yill3 + oIV F ()3 (14)
=20 (1 — )V F(Yr), ve — yp)l -
Substituting (14) into (13), we obtain the expression for ¢j_ ;. I

Theorem 9.5 Let L > p > 0. Consider f € Si’lL(]R"), possible with ¢ = 0 (which means that
fe f}jl(R”)). For given xg € R", let us choose ¢f; = f(xo) and vy := xy. Consider also 79 > 0
such that L > 49 > p > 0. Define the sequences {a;}32 1, {71520, {Ur}io, {2k} 0s {Vr}0,
{05172, and {¢pp ()}, for the iteration k starting at k := 0:

a_1 = 0,
ay € (0,1] root of Lad = (1 — o)k + nfh i= Vet
QEVEVE + Ve+1Tk
Vi T+ o

Y =
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. 1
wpr issuch that  f(@rin) < f(ye) — o7 IVF@i)3,

2L
1
vipr = ——[(1 = ap) ok + oy — axV £y,
Ve+1
2
Prr = (I —an)op +arf(yy) — 5 IV f(yn) Il
VE+1
ag(l — ag)ye (1
O ORI (B 8 (V). vk - w))
V41
* V41
Gp1(@) = dppq + TJFHQU — o3
k—1
Then, we satisfy all the conditions of Lemma 9.2 for A\ = H (1 —ay).
i=—1

Proof:
In fact, due to Lemmas 9.3 and 9.4, it just remains to show that o € (0,1] for (£ =0,1,...)

o
such that Z ayj = 00. In the special case of u = 0, we must show that o, <1 (k=0,1,...). And

k=0
finally that f(xzy) < ¢j.

Let us show both using induction hypothesis.

Consider the quadratic equation in «, go(a) := La® + (y0 — p)a — 70 = 0. Notice that its
discriminant A := (49— p)? + 4L is always positive by the hypothesis. Also, go(0) = —vg < 0, due
to the hypothesis again. Therefore, this equation always has a root oy > 0. Since go(1) = L—pu > 0,
ap < 1, and we have ag € (0,1]. If x = 0, and a9 = 1, we will have L = 0 which implies y9 = 0
which contradicts our hypothesis. Then o < 1 in this case. In addition, 71 := (1 — )0 + @op > 0
and v9 + app > 0. The same arguments are valid for any k. Therefore, oy, € (0,1], and oy <
1 (k=0,1,...,)if p=0.

Finally, Lai = (1= o)k +app > (1 — o)+ agp = p. And we have oy, > /%, and therefore,

o
Z ap = 00, if > 0. For the case y = 0, the argument is the same as the proof of Theorem 9.6.
k=0

Now for k =0, f(xo) < ¢5. Suppose that the induction hypothesis is valid for any index equal
or smaller than k. Due to the previous lemma,

2

G = (- asi b onf () — 5 IV F 3

I
(5l = orll3 + (VF (i) vr — 1))
o
2Vk+1

(%”yk — |3+ (VF(yL),vi — yk>> .

+Ozk(1 — Ozk>’)/k
YE+1

> (1= o) f(zr) + arf(yg) —

oap(l — o
N k( k) Vk
V41

IV £ (yi) I3

Now, since f(x) is convex, f(xx) > f(y) + (Vf(ys), Tk — Y1), and multiplying this inequality by
(1 — o) we have:

2

o Uk ag (1 — ag)vep
oo IV F ) B+ (=) (V£ (). 5 (o) b —yp) + =
V41 V41 Ve+1

Recall that since V f is L-Lipschitz continuous, if we apply Lemma 3.5 to y, and xp+1 = y, —
1V f(yx), we obtain

1 > [(yp)— lyp—vkll3-

Fln) — 57 IV @I > Fwni).
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