Proof:

Since & ¢ int(C'), there is a sequence {x;} which does not belong to the closure of C, C, and
converges to &. Now, denote by p(xx) the orthogonal projection of @) into C' by a standard norm.
One can see that by the convexity of C' [Bertsekas|

(p(xk) — zk)" (x — p(zg)) >0, Ve .
Hence,
(p(xr)—mi) @ > (p(xi) k) plr) = (p(@r) k)" (p(k) — k) +(p(w8) —2k) @k > (P(h)—28) T -

Now, since x, ¢ C, calling dj, = %,

diz > dlxz,, VxeCl.

Since ||dg|| = 1, it has a converging subsequence which will converge to let us say d. Taking the
same indices for this subsequence for xj, we have the desired result. 1

Theorem 2.2 (Separation Theorem for Convex Sets) Let C and C nonempty non-intersecting
convex subsets of R™. Then, dd € R", d # 0 such that

sup declg inf dT:L'Q.
TieCy L2€C2

Proof:
Consider the set
C::{zcg—zcle]R"]wQECg, .’131601}

which is convex by Propositions 1.10 and 1.11.
Since C7 and Cy are disjoint, the origin 0 does not belong to the interior of C'. From Proposi-
tion 2.1, there is d # 0 such that dl'z > 0, Vo € C. Therefore

dT.’El < dTCCQ, Va; € C1 and x € Cs.
Finally, since both C; and Cy are nonempty, it follows the result. 1

Remark 2.3 The Separation Theorem for Convex Sets is an essential result to show the strong
duality theorem in convex optimization problems (see for example [Bertsekas]).

3 Lipschitz Continuous Differentiable Functions

Definition 3.1 Let x € R" and s € R" be a direction (vector) in R". Then the one-sided directional
derivative of a function f : R"™ — R in the direction s is defined as

f'(x; 8) := lim fl@+as) - f(x)

al0 «

Let f: R™ — R be a differentiable function on R". Then for any «,y € R"™, we have

fy) = f(@) + (Vf(x),y —x) + oflly — z[2),
where o(r) is some function of > 0 such that

1
lim — = =0.
lim ro(r) 0, 0o(0) =0
We say that the function is continuously differentiable if the function V f : R™ — R" is contin-
uous.
Hereafter, we define for a,b € R", the standard inner product (a,b) := > ; a;b;, and the

associated norm |lal|2 := /(a, a) to it.



Definition 3.2 Let ) be a subset of R". We denote by Clz’p (Q) the class of functions with the
following properties:

e Any f € C]Z’p (Q) is k times continuously differentiable on Q;

e [ts pth derivative is Lipschitz continuous on @) with the constant L > 0:
1FP (@) = fP @)z < L|z —yll2, Yo,y € Q.

In particular, f)(z) = Vf(z) and f@(x) = V2f(x). Observe that if f; € C]Z’f(Q), f2 €
CHP(Q), and a, B € R, then for Ly = |a|L; + |B|L2 we have afi + Bf2 € C7P(Q).

Lemma 3.3 Let f € C2(R"). Then f € C3'(R") if and only if | V2f(x)|ls < L, V& e R™

Proof:
For x,y € R",

1
Vi) = Vi@ + /0 V2 iz + 1y — )y — z)dr

= Vf(x)+ </01 Vif(x+7(y — ac))dT) (y —x).

Since HV2f(a:)H2 <L,

IVFf(y) = V@)l < ly — x|

2

1
/0 V2f(a: +7(y —x))dr

IN

1
/0 IV2F (@ + r(y — @) 2drlly — >

Lljy — |-

IN

On the other hand, for s € R, and a € R, o # 0,
IV £z +as) - VE@)> < |o|Z]s]).
Dividing both sides by |a| and taking the limit to zero,
IV2f(@)s]2 < L|isll2, s €R".
Therefore, |V2f(z)|2 < L. 1
Example 3.4
1. The linear function f(x) = a + (a,x) € Cg’l(]R") since
Vf(x)=a, Vf(z)=0.

2. The quadratic function f(xz) = a + (a,z) + 1/2(Azx,x) with A = AT belongs to C%I(R”)
where
Vi@ =atAz, Vf(@)=A L=|A

3. The function f(z) = V1 + 22 € C'(R) since

1
Vi(z) = ﬁ V@) = g S b



Lemma 3.5 Let [ € ClL’l(R"). Then for any x,y € R", we have

7) ~ (@)~ (VF@)y— @) < ©ly — =l

Proof:
For any «,y € R", we have

1
fy) = f@)+ /0 (Vi@ +r(y— ).y - z)dr

1
= f(w)+<Vf(w)7y—sv>+/o (Vf@+7(y—=z) - Vf(z),y—x)dr.

Therefore,

1
[f(y) = flx) = (Vf(x),y —=z)| = /0<Vf(w+7(’y—90))—Vf(l‘),y—m)df

1

< /0|<Vf<:v+r<y—w>>—Vf<w>vy—w>ldf
1

< [ 1@t — )~ VI@)ely - oladr
1 L

< [ rLly - =lgar = 5y -l

Consider a function f € Ci’l(]R"). Let us fix g € R", and define two quadratic functions:
L
b1(x) = f(@o) +(VF(@o),w — @) — 5 ll& — @oll3,

bol@) = flao) + (Y flao).a — o) + =l — ol

Then the graph of the function f is located between the graphs of ¢ and ¢o:
¢1(x) < f(z) < do(x), x€R™

Lemma 3.6 Let f € C?\/‘,’z(R”). Then for all ,y € R", we have
M
IVF(y) = V(@) - Vf(@)(y —2)|2 < -y — =3,
M
|f(y) = f(x) = (Vf(x),y —z) - %(VQf(w)(y —x)y—@) <y - z|3.

Lemma 3.7 Let f € C3F(R"), with | V2 f(x) — V2f(y)|l2 < M|z — y|j2. Then
Vif(®) - My — 2|1 X V2f(y) < V2 f(x) + M|y — =|1.

Proof:
Since f € C22(R™), |[V2f(y) — V2f(z)|2 < M|y — x|l2. This means that the eigenvalues of
the symmetric matrix V2 f(y) — V2f(x) satisfy:

N(V2f(y) — V2F(@)| < My —xl]2, i=1,2,...,n.

Therefore,
—M|ly —z[2I < V*f(y) - V*f(z) < M|y — 2|1



