
Therefore, if we impose
αkγk
γk+1

(vk − yk) + xk − yk = 0

it justifies our choice for yk. And putting

α2
k

2γk+1
=

1

2L

it justifies our choice for αk. Since
αk(1−αk)γkµ

γk+1
≥ 0, we finally obtain ϕ∗

k+1 ≥ f(xk+1) as wished.

The above theorem suggests an algorithm to minimize f ∈ S1,1
µ,L(R

n).
Notice that in the following optimal gradient method, we don’t need the estimated sequence

anymore.
General Scheme for the Optimal Gradient Method

Step 0: Choose x0 ∈ Rn, let γ0 > 0 such that L ≥ γ0 ≥ µ ≥ 0.
Set v0 := x0 and k := 0.

Step 1: Compute αk ∈ (0, 1] from the equation Lα2
k = (1− αk)γk + αkµ.

Step 2: Set γk+1 := (1− αk)γk + αkµ, yk :=
αkγkvk+γk+1xk

γk+αkµ
.

Step 3: Compute f(yk) and ∇f(yk).
Step 4: Find xk+1 such that f(xk+1) ≤ f(yk)− 1

2L∥∇f(yk)∥22 using “line search”.

Step 5: Set vk+1 :=
(1−αk)γkvk+αkµyk−αk∇f (yk)

γk+1
, k := k + 1 and go to Step 1.

Theorem 9.6 Consider f ∈ S1,1
µ,L(R

n), possible with µ = 0 (which means that f ∈ F1,1
L (Rn)). The

general scheme of the optimal gradient method generates a sequence {xk}∞k=0 such that

f(xk)− f(x∗) ≤ λk

[
f(x0) +

γ0
2
∥x∗ − x0∥22 − f(x∗)

]
,

where α−1 = 0 and λk =

k−1∏
i=−1

(1− αi). Moreover,

λk ≤ min

{(
1−

√
µ

L

)k

,
4L

(2
√
L+ k

√
γ0)2

}
.

In other words, the sequence {f(xk) − f(x∗)}∞k=0 converges R-sublinearly to zero if µ = 0 and
R-linearly to zero if µ > 0. In addition, if µ > 0,

∥xk − x∗∥2 ≤ 2

µ
λk

[
f(x0) +

γ0
2
∥x∗ − x0∥22 − f(x∗)

]
.

Proof:
The first part is obvious from the definition and Lemma 9.2.

We already know that αk ≥
√

µ
L (k = 0, 1, . . .) (see proof of Theorem 9.5), therefore,

λk =
k−1∏
i=−1

(1− αi) =
k−1∏
i=0

(1− αi) ≤
(
1−

√
µ

L

)k

,

which only has an effect if µ > 0. For the case µ = 0, let us prove first that γk = γ0λk. Obviously
γ0 = γ0λ0, and assuming the induction hypothesis,

γk+1 = (1− αk)γk + αkµ = (1− αk)γk = (1− αk)γ0λk = γ0λk+1.
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Therefore, Lα2
k = γk+1 = γ0λk+1. Since λk is a decreasing sequence

1√
λk+1

− 1√
λk

=

√
λk −

√
λk+1√

λkλk+1

=
λk − λk+1√

λkλk+1(
√
λk +

√
λk+1)

≥ λk − λk+1√
λkλk+1(

√
λk +

√
λk)

=
λk − λk+1

2λk

√
λk+1

=
λk − (1− αk)λk

2λk

√
λk+1

=
αk

2
√
λk+1

=
1

2

√
γ0
L
.

Thus
1√
λk

≥ 1 +
k

2

√
γ0
L

and we have the result.
For µ > 0, using the definition of strong convexity of f(x), we obtain the upper bound for

∥xk − x∗∥22.

Theorem 9.7 Consider f ∈ S1,1
µ,L(R

n), possible with µ = 0 (which means that f ∈ F1,1
L (Rn)). If

we take γ0 = L, the general scheme of the “optimal” gradient method generates a sequence {xk}∞k=0

such that

f(xk)− f(x∗) ≤ Lmin

{(
1−

√
µ

L

)k

,
4

(k + 2)2

}
∥x0 − x∗∥22.

This means that it is “optimal” for the class of functions from S1,1
µ,L(R

n) with µ > 0, or F1,1
L (Rn).

In the particular case of µ > 0, we have the following inequality for k sufficiently large:

∥xk − x∗∥22 ≤
2L

µ
min

{(
1−

√
µ

L

)k

,
4

(k + 2)2

}
∥x0 − x∗∥22.

That means that the sequence {∥xk − x∗∥2}∞k=0 converges R-linearly to zero.

Proof:
The two inequalities follow from the previous theorem, f(x0) − f(x∗) ≤ ⟨∇f(x∗),x0 − x∗⟩ +

L
2 ∥x0 − x∗∥22, and the fact that ∇f(x∗) = 0.

For the case µ = 0, the “optimality” of the method is obvious from Theorem 7.1.
Let us analyze the case when µ > 0. From Theorem 7.2, we know that we can find functions

f ∈ S∞,1
µ,L (R∞) such that

f(xk)− f(x∗) ≥ µ

2

(√
L/µ− 1√
L/µ+ 1

)2k

∥x0 − x∗∥22 ≥
µ

2
exp

(
− 4k√

L/µ− 1

)
∥x0 − x∗∥22,

where the second inequality follows from ln(a−1
a+1) = − ln(a+1

a−1) ≥ 1− a+1
a−1 = − 2

a−1 , for a ∈ (1,+∞).
Therefore, the worst case bound to find xk such that f(xk)− f(x∗) < ε can not be better than

k >

√
L/µ− 1

4

(
ln

1

ε
+ ln

µ

2
+ 2 ln ∥x0 − x∗∥2

)
.

On the other hand, from the above result

f(xk)− f(x∗) ≤ L∥x0 − x∗∥22
(
1−

√
µ

L

)k

≤ L∥x0 − x∗∥22 exp

(
− k√

L/µ

)
,

where the second inequality follows from ln(1 − a) ≤ −a for a < 1. Therefore, we can guarantee
f(xk) − f(x∗) < ε for k >

√
L/µ

(
ln 1

ε + lnL+ 2 ln ∥x0 − x∗∥2
)
. This shows that the “General
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