Therefore, if we impose
AEYk

Ve+1

(Vh —Yp) +xp — Y, =0

it justifies our choice for y,. And putting

2

ap 1
2941 2L
it justifies our choice for ay. Since 2L > () we finally obtain Gry1 = fxpy1) as wished.

Ye+1
The above theorem suggests an algorithm to minimize [ € S}Li(R”)
Notice that in the following optimal gradient method, we don’t need the estimated sequence
anymore.

General Scheme for the Optimal Gradient Method
Step 0: Choose g € R", let 79 > 0 such that L > 9 > u > 0.
Set vy : = xg and k := 0.
Step 1: Compute oy, € (0,1] from the equation L%%_? (13;_ ag) Yk + app.
«
Step 2:  Set yii1 := (1 — ag)ve + arlt, Y == W
Step 3: Compute f(y;) and V f(y;).
Step 4: Find x4 such that f(zg+1) < f(ys) — 52|V F(ys)|3 using “line search”.

Step 5: Set vgiq := (l_a’“)kaﬁo‘;“:gk_akvf(yk), k:=k+1 and go to Step 1.

Theorem 9.6 Consider f € Si’lL(R”), possible with g = 0 (which means that f € .FIL’I(]R”)). The
general scheme of the optimal gradient method generates a sequence {x;}3°, such that

f@i) = F@) < [ f(@o) + Pl — zoll3 — f(@)]

k-1
where a1 = 0 and A\, = H (1 — «;). Moreover,

i=—1

Akgmm{(l_@’imiw}_

In other words, the sequence {f(xy) — f(x*)}32, converges R-sublinearly to zero if u = 0 and
R-linearly to zero if p > 0. In addition, if p > 0,

e~ 7* <~ A [ (o) + lle” — aolld — f(2)]

Proof:
The first part is obvious from the definition and Lemma 9.2.

We already know that ay > \/% (k=0,1,...) (see proof of Theorem 9.5), therefore,

k—1 k—1 k
A = H(1—ai)=1—[(1—ai)§<1— Z) ;

i=—1 1=0

which only has an effect if > 0. For the case p = 0, let us prove first that vy = vAr. Obviously
Yo = YoAo, and assuming the induction hypothesis,

Vi1 = (1 = ap)ye + app = (1 — o) v = (1 — ax)yo ke = Yo et1-
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Therefore, La% = Vp+1 = YoAgr1- Since Ny is a decreasing sequence

| W—M_ Ak — Agt1
Va1 VA a VAN VAN (VA Vet 1)
A — Akt A= M1 A= (L ap)h
VAM (VA + V) 20/ kg1 2Xk v/ A1
Qg 1 /%

2/ M1 2V L

1 kv
>4
VAL T 2V L
and we have the result.

For p > 0, using the definition of strong convexity of f(x), we obtain the upper bound for
Hmk —-x*H%. 1

Thus

Theorem 9.7 Consider [ € S}L’IL(R”), possible with ;1 = 0 (which means that f € f%l(R”)). If
we take 9 = L, the general scheme of the “optimal” gradient method generates a sequence {x}7°

such that N
4
flxk) — f(x") SLmin{(l— Z) ,W} Hcco—zc*H%.

This means that it is “optimal” for the class of functions from S;lL(}R”) with >0, or F i’l(R”).
In the particular case of ;> 0, we have the following inequality for k& sufficiently large:

k
e 2L I 4 .
o H%summ{<1— ¢ ,W}Hwo—w 13

That means that the sequence {|lx; — x*[|2}72, converges R-linearly to zero.

Proof:

The two inequalities follow from the previous theorem, f(xo) — f(x*) < (Vf(x*),xo — *) +
%H«’Bo — x*||3, and the fact that V f(x*) = 0.

For the case p = 0, the “optimality” of the method is obvious from Theorem 7.1.

Let us analyze the case when p > 0. From Theorem 7.2, we know that we can find functions
fe SZO’LI(ROO) such that

2k
VL/p—1 4k
Jlax) = J(@) > § (Jﬁﬂ) o — @[3 > § exp (W) o — @[3,
a—1 a+}

where the second inequality follows from In(451) = —In(2}) > 1 — %4 = — 2. for a € (1, +00).

1
Therefore, the worst case bound to find xj, such that f(xx) — f(x*) < € can not be better than

VL/u—1

k
T

1
<1n+1n“+21n||m0—x*y2> .
€ 2

On the other hand, from the above result

k
flr) = f(a*) < Llxo — 2|3 <1 - \/g) < Ll|ao — 2*[3 exp <_ J%) :

where the second inequality follows from In(1 — a) < —a for a < 1. Therefore, we can guarantee
flxr) — f(x*) < efor k > \/L/u (hlé +InL + 2In||zg — x*||2). This shows that the “General
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