o0

Theorem 7.2 For any @y € R, there exists a function f € S " ’LI(R‘X’) such that for any gradient

based method of type M, we have

2%
* M \/L/M_l * (12
flxg) — f(x2*) > 5 (W) leo — 2*||3,

> (VEEZD) ey o
- VL) VT

le — 2|3

where z* is the minimum of f(x).

Proof:

This type of methods are invariant with respect to a simultaneous shift of all objects in the
space of variables. Therefore, we can assume that xo = {0}5°;.

Consider the following quadratic function

fuslw) = HEE=D {[mﬁ F3 (e~ () - 2[mh} e
=1

Then I . I )
Vi, (@) = <M</H—)A+M> L HL/p—1)
’ 4 4

where A is the same tridiagonal matrix defined in Theorem 7.1, but with infinite dimension and
e; € R*™ is a vector where only the first element is one.

After some calculations, we can show that uI < V2f(x) < LI and therefore, f(x) € S;OLl (R*),
due to Corollary 6.21.

The minimal optimal solution of this function is:

[ ]l.—q—<m+l>, =1,2,...

€1,

Then

lao — 3= S =D % = Ly

i=1 i=1 q
Now, since V f, 1 (z0) = —Wq, and A is a tridiagonal matrix, [xg]; =0fori=k+1,k+
2,...,and
2 - 2 - 2i g* ) 2k
lze =23 > Y @ =) o= [z = llwo— 7|3
i=k+1 i=k+1 q

Finally, the first inequality follows from Corollary 6.17. 1

8 The Steepest Descent Method for Differentiable Convex and
Differentiable Strongly Convex Functions with Lipschitz Con-
tinuous Gradients

Let us consider the steepest descent method with constant step h.

Theorem 8.1 Let f € F lL’l(]R"), and 0 < h < % The steepest descent method with constant step
generates a sequence which converges as follows:

) — f(a' 2(f (@) — f(@")|lwo — =" [13
Han) = 1@ < S = B+ kh(2 = LA)(f (o) — (@)
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Proof:
Denote ri = [|@r — *||2. Then
riv = k=2 = AV ()3
rie = 20V f (k) @, — &) + BV F ()13
= i = 20V f(ax) = VF(@"), @z — @) + 12|V f ()13

2
-n (- 0) IVHaIE

IN

where the last inequality follows from Theorem 6.13.
Therefore, since 0 < h < %, Tl < T < -+ < 7p.
Now

f@rr1) < flze) +(VF(xk), Tps1 — zx) + g”ka—i-l — 3
= flzg) — w||V ()3 < f(x), (10)

where w = h(1 — %h) Denoting by A = f(xr) — f(x*), from the convexity of f(«), Theorem 6.7,
and the Cauchy-Schwarz inequality,

Ap = f(xr) — f(&7) < (VF(@p), mp — ") <[V f(@p)llare < [V F(@)]l2ro- (11)

Combining (10) and (11),

w
Ap1 < Ay — SA;.
7o
Thus dividing by AgAgiq,

1 1 w A 1 w
> —+t 5+ — =25+t
JAY A AV AV VA VAR
since AAka -2 1. Summing up these inequalities we get
1 1 w
> —+ =((k+1).
Arr1 — Ao 7”%( )
1
To obtain the optimal step size, it is sufficient to find the maximum of the function w := w(h) =
h(1 — Lh) which is h* := 1/L.
Corollary 8.2 If f € F 1L’1(]R"), the steepest descent method with constant step h = 1/L yields
o o 2L|lzo — a*[|3
_ < 27y 7 N2
flan) - @) < 20
That is, {f(xr)}72, converges R-sublinearly to f(x*).
Proof:
Left for exercise. 1

Theorem 8.3 Let f € S;’lL(]R"), and 0 < h < ;HLL The steepest descent method with constant
step generates a sequence which converges as follows:

. 2hpL \ "
ok —al3 < (1—“) lwo — 2|13

p+ L
L 2huL \ " )
—flz") < Z(1-2E= —z*|2.
flay) — fl@") < 2( /HL) o — 2*[|3



2
If h = m, then

L /L _ 2k
fa) -1 < 5 () o=l

o =o'l < (7erq) oo

That is, {zx}72, and {f(xr)}32, converges R-linearly to x* and f(x*), respectively.

Proof:
Denote ry = || — *||2. Then

rep = |l — @ — hV f(x)3
= 17— 2h(V f(z)), T — =) + B2V £ ()3
= 17— 20V f(z)) — V(@) 2 — ") + 1|V (20)3

pL 1 x
< ot (ke IV @) - VI@)IR) + P9 el

B 2hpul\ 5 2 9
= (-2 ) en (n 2 ) IV A

from Theorems 6.13 and 6.22, and it proves the first two inequalities.
Now, for h = 2/(L + p) and again from Theorem 6.13,

flay) = (&) = (V f(z"), z) — x7)

A
dl
B
=
|

8
_*
O

Theorem 8.4 (Yuan 2010) 2 In the special case of a strongly convex quadratic function f(x) =
Az, z) + (a,z) + o with \(A) = L > \,(A) = p > 0, we can obtain

k
L/iu—1
Lip+4/31

|zs — 2|2 < o — =" |2

for the steepest descent method with “exact line search”.

e Note that the previous result for the steepest descent method, Theorem 5.12, was only a local
result. Theorems 8.1 and 8.3 guarantee that the steepest descent method converges for any
starting point g € R" (due to convexity).

e Comparing the rate of convergence of the steepest descent method for the classes F lL’l(]R”)

and SilL(R”) (Theorems 8.1, Corollary 8.2, and 8.3, respectively) with their lower complexity
bounds (Theorems 7.1 and 7.2, respectively), we possible have a huge gap.

2Y .-X. Yuan, “A short note on the Q-linear convergence of the steepest descent method”, Mathematical Program-
ming 123 (2010), pp. 339-343.
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8.1 Exercises

1. Prove Corollary 8.2.

2. Consider a sequence {3}, which converges to zero.

The sequence is said to converge @Q-sublinearly if

A zero converging sequence {f;}7° is said to converge R-sublinearly if it is dominated by a
Q-sublinearly converging sequence. That is, if there is a Q-sublinearly converging sequence
{Br}7Zo such that 0 < [Bg| < B

(o) Shs it 0 Qelienr oo

(b) Give an example of a Q-sublinear converging sequence which is not Q-linear converging
sequence.

s

(c) Give an example of a R-sublinear converging sequence which is not R-linear converging
sequence.

9 The Optimal Gradient Method (First-Order Method, Acceler-
ated Gradient Method, Fast Gradient Method)

This algorithm was proposed for the first time by Nesterov® in 1983. In [Nesterov03], he gives a
reinterpretation of the algorithm and provides another justification of it which attains the same
complexity bound of the original article.

Definition 9.1 A pair of sequences {¢(x)}72, and {A\}72, with A\ > 0 is called an estimate
sequence of the function f(x) if
A — 0,

and for any & € R™ and any k > 0, we have

dr(x) < (1= ) f() + Apdo().

Lemma 9.2 Given an estimate sequence {¢p()}72, { Ak}, and if for some sequence {x4}72,
we have

f(xr) < ¢f == min ¢p(x)
xcR

then f(xx) — f(x*) < Mp(do(x*) — f(x*)) — 0.

Proof:
It follows from the definition. I

Lemma 9.3 Assume that
1. fe SL(R"), possible with y = 0 (which means that f € F*(R")).
2. ¢o(x) is an arbitrary function on R™.

3. {yr}i, is an arbitrary sequence in R".

3Y. Nesterov, “A method for solving the convex programming problem with convergence rate o(1/ kz),” Dokl.
Akad. Nauk SSSR 269 (1983), pp. 543-547.
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