
4. 0 ≤ 1
L∥∇f(x)−∇f(y)∥22 ≤ ⟨∇f(x)−∇f(y),x− y⟩.

5. 0 ≤ ⟨∇f(x)−∇f(y),x− y⟩ ≤ L∥x− y∥22.

6. f(αx+ (1− α)y) + α(1−α)
2L ∥∇f(x)−∇f(y)∥22 ≤ αf(x) + (1− α)f(y).

7. 0 ≤ αf(x) + (1− α)f(y)− f(αx+ (1− α)y) ≤ α(1− α)L2 ∥x− y∥22.

Proof:
1⇒2 It follows from Lemmas 6.7 and 3.5.

2⇒3 Fix x ∈ Rn, and consider the function ϕ(y) = f(y)− ⟨∇f(x),y⟩. Clearly ϕ(y) satisfies
2. Also, y∗ = x is a minimal solution. Therefore from 2,

ϕ(x) = ϕ(y∗) ≤ ϕ

(
y − 1

L
∇ϕ(y)

)
≤ ϕ(y) +

L

2

∥∥∥∥ 1L∇ϕ(y)

∥∥∥∥2
2

+ ⟨∇ϕ(y),− 1

L
∇ϕ(y)⟩

= ϕ(y) +
1

2L
∥∇ϕ(y)∥22 −

1

L
∥∇ϕ(y)∥22 = ϕ(y)− 1

2L
∥∇ϕ(y)∥22.

Since ∇ϕ(y) = ∇f(y)−∇f(x), finally we have

f(x)− ⟨∇f(x),x⟩ ≤ f(y)− ⟨∇f(x),y⟩ − 1

2L
∥∇f(y)−∇f(x)∥22.

3⇒4 Adding two copies of 3 with x and y interchanged, we obtain 4.

4⇒1 Applying the Cauchy-Schwarz inequality to 4, we obtain ∥∇f(x)−∇f(y)∥2 ≤ L∥x−y∥2.
Also from Theorem 6.7, f(x) is convex.

2⇒5 Adding two copies of 2 with x and y interchanged, we obtain 5.

5⇒2

f(y)− f(x)− ⟨∇f(x),y − x⟩ =

∫ 1

0
⟨∇f(x+ τ(y − x))−∇f(x),y − x⟩dτ

≤
∫ 1

0
τL∥y − x∥22dτ =

L

2
∥y − x∥22.

The non-negativity follows from Theorem 6.7.
3⇒6 Denote xα = αx+ (1− α)y. From 3,

f(x) ≥ f(xα) + ⟨∇f(xα), (1− α)(x− y)⟩+ 1

2L
∥∇f(x)−∇f(xα)∥22

f(y) ≥ f(xα) + ⟨∇f(xα), α(y − x)⟩+ 1

2L
∥∇f(y)−∇f(xα)∥22.

Multiplying the first inequality by α, the second by 1− α, and summing up, we have

αf(x) + (1− α)f(y) ≥ f(xα) +
α

2L
∥∇f(x)−∇f(xα)∥22 +

1− α

2L
∥∇f(y)−∇f(xα)∥22.

Finally, using the inequality

α∥b− d∥22 + (1− α)∥c− d∥22 ≥ α(1− α)∥b− c∥22

we have the result.
−α(1− α)∥b− c∥22 ≥ −α(1− α)(∥b− d∥2 + ∥c− d∥)22
Therefore
α∥b− d∥22 + (1− α)∥c− d∥22 − α(1− α)(∥b− d∥2 + ∥c− d∥2)2
= (α∥b− d∥2 − (1− α)∥c− d∥2)2 ≥ 0


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6⇒3 Dividing both sides by 1− α and tending α to 1, we obtain 3.

2⇒7 From 2,

f(x) ≤ f(xα) + ⟨∇f(xα), (1− α)(x− y)⟩+ L

2
(1− α)2∥x− y∥22

f(y) ≤ f(xα) + ⟨∇f(xα), α(y − x)⟩+ L

2
α2∥x− y∥22

Multiplying the first inequality by α, the second by 1− α, and summing up, we have

αf(x) + (1− α)f(y) ≤ f(xα) +
L

2

(
α(1− α)2 + (1− α)α2

)
∥x− y∥22.

The non-negativity follows from Theorem 6.7.
7⇒2 Dividing both sides by 1−α and tending α to 1, we obtain 2. The non-negativity follows

from Theorem 6.7.

6.4 Differentiable Strongly Convex Functions

Definition 6.14 A continuously differentiable function f(x) is called strongly convex on Rn (no-
tation f ∈ S1

µ(Rn)) if there exists a constant µ > 0 such that

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ 1

2
µ∥y − x∥22, ∀x,y ∈ Rn.

The constant µ is called the convexity parameter of the function f .

Example 6.15 The following functions are strongly convex functions:

1. f(x) = 1
2∥x∥

2
2.

2. f(x) = α+ ⟨a,x⟩+ 1
2⟨Ax,x⟩, for A ⪰ µI, µ > 0.

3. A sum of a convex and a strongly convex functions.

Remark 6.16

1. Strongly convex functions are different from strictly convex functions. For instance, f(x) = x4

is strictly convex at x = 0 but it is not strongly convex at the same point.

2. The ℓ1-regularized logistic regression function f(x) = log(1 + exp(−⟨a,x⟩)) + λ∥x∥1 which
is a sum of a convex function and a strongly convex (non-differentiable) function is strongly
convex.

Corollary 6.17 If f ∈ S1
µ(Rn) and ∇f(x∗) = 0, then

f(x) ≥ f(x∗) +
1

2
µ∥x− x∗∥22, ∀x ∈ Rn.

Proof:
Left for exercise.

Theorem 6.18 Let f be a continuously differentiable function. The following conditions are equiv-
alent:

1. f ∈ S1
µ(Rn).
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2. µ∥x− y∥22 ≤ ⟨∇f(x)−∇f(y),x− y⟩, ∀x,y ∈ Rn.

3. f(αx+ (1− α)y) + α(1− α)µ2∥x− y∥22 ≤ αf(x) + (1− α)f(y), ∀x,y ∈ Rn, ∀α ∈ [0, 1].

Proof:
Left for exercise.

Theorem 6.19 If f ∈ S1
µ(Rn), we have

1. f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ 1
2µ∥∇f(x)−∇f(y)∥22, ∀x,y ∈ Rn,

2. ⟨∇f(x)−∇f(y),x− y⟩ ≤ 1
µ∥∇f(x)−∇f(y)∥22, ∀x,y ∈ Rn.

Proof:
Let us fix x ∈ Rn, and define the function ϕ(y) = f(y) − ⟨∇f(x),y⟩. Clearly, ϕ ∈ S1

µ(Rn).
Also, one minimal solution is x. Therefore,

ϕ(x) = min
v∈Rn

ϕ(v) ≥ min
v∈Rn

[
ϕ(y) + ⟨∇ϕ(y),v − y⟩+ µ

2
∥v − y∥22

]
= ϕ(y)− 1

2µ
∥∇ϕ(y)∥22

as wished. Adding two copies of the 1 with x and y interchanged, we get 2.

The converse of Theorem 6.19 is not valid. For instance, consider f(x1, x2) = x21 − x22, µ = 1.
Then the inequalities 1. and 2. are satisfied but f /∈ S1

µ(R2) for any µ > 0.

Theorem 6.20 Let f be a twice continuously differentiable function. Then f ∈ S2
µ(Rn) if and only

if
∇2f(x) ⪰ µI, ∀x ∈ Rn.

Proof:
Left for exercise.

Corollary 6.21 Let f be a twice continuously differentiable function. Then f ∈ S2,1
µ,L(R

n) if and
only if

LI ⪰ ∇2f(x) ⪰ µI, ∀x ∈ Rn.

Proof:
Left for exercise.

Theorem 6.22 If f ∈ S1,1
µ,L(R

n), then

µL

µ+ L
∥x− y∥22 +

1

µ+ L
∥∇f(x)−∇f(y)∥22 ≤ ⟨∇f(x)−∇f(y),x− y⟩, ∀x,y ∈ Rn.

Proof:
If µ = L, from Theorem 6.18 and the definition of C1

µ(Rn),

⟨∇f(x)−∇f(y),x− y⟩ ≥ µ

2
∥x− y∥22 +

µ

2
∥x− y∥22

≥ µ

2
∥x− y∥22 +

1

2µ
∥∇f(x)−∇f(y)∥22,

and the result follows.
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