6 Differentiable Convex Functions

6.1 Convex Functions

Definition 6.1 Let Q be a subset of \mathbb{R}^n . We denote by $\mathcal{F}^k(Q)$ the class of functions with the following properties:

- Any $f \in \mathcal{F}^k(Q)$ is k times continuously differentiable on Q;
- f is convex on Q, *i.e.*, given $\forall x, y \in Q$ and $\forall \alpha \in [0, 1]$,

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

Theorem 6.2 $f \in \mathcal{F}(\mathbb{R}^n)$ if and only if its epigraph $E := \{(x, y) \in \mathbb{R}^{n+1} \mid f(x) \leq y\}$ is a convex.

Proof:

 \implies Let $(x_1, y_1), (x_2, y_2) \in E$. Then for any $0 \le \alpha \le 1$, we have

$$f(\alpha x_1 + (1 - \alpha)x_2) < \alpha f(x_1) + (1 - \alpha)f(x_2) < \alpha y_1 + (1 - \alpha)y_2$$

and therefore $(\alpha x_1 + (1 - \alpha)x_2, \alpha y_1 + (1 - \alpha)y_2) \in E$.

 \leftarrow Let $(x_1, f(x_1)), (x_2, f(x_2)) \in E$. By the convexity of E, for any $0 \le \alpha \le 1$,

$$f(\alpha \boldsymbol{x}_1 + (1 - \alpha)\boldsymbol{x}_2) \le \alpha f(\boldsymbol{x}_1) + (1 - \alpha)f(\boldsymbol{x}_2)$$

and therefore, $f \in \mathcal{F}(\mathbb{R}^n)$.

Theorem 6.3 If $f \in \mathcal{F}(\mathbb{R}^n)$, then its λ -level set $L_{\lambda} := \{ \boldsymbol{x} \in \mathbb{R}^n \mid f(\boldsymbol{x}) \leq \lambda \}$ is convex for each $\lambda \in \mathbb{R}$. But the converse is not true.

Proof:

For any $\lambda \in \mathbb{R}$, let $\boldsymbol{x}, \boldsymbol{y} \in L_{\lambda}$. Then for $\forall \alpha \in (0,1)$, since $f \in \mathcal{F}(\mathbb{R}^n)$, $f(\alpha \boldsymbol{x} + (1-\alpha)\boldsymbol{y}) \leq \alpha f(\boldsymbol{x}) + (1-\alpha)f(\boldsymbol{y}) \leq \alpha \lambda + (1-\alpha)\lambda = \lambda$. Therefore, $\alpha \boldsymbol{x} + (1-\alpha)\boldsymbol{y} \in L_{\lambda}$.

For the converse, $L_{\lambda} = \{x \in \mathbb{R} \mid f(x) = x^3 \leq \lambda\}$ is convex for all $\lambda \in \mathbb{R}$, but $f \notin \mathcal{F}(\mathbb{R})$.

Theorem 6.4 (Jensen's inequality) A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if for any positive integer m, the following condition is valid

$$\left. \begin{array}{l} \boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_m \in \mathbb{R}^n \\ \alpha_1, \alpha_2, \dots, \alpha_m \geq 0 \\ \sum\limits_{i=1}^m \alpha_i = 1 \end{array} \right\} \Rightarrow f\left(\sum\limits_{i=1}^m \alpha_i \boldsymbol{x}_i\right) \leq \sum\limits_{i=1}^m \alpha_i f(\boldsymbol{x}_i).$$

Proof:

Left for exercise.

Example 6.5 The function $-\log x$ is convex on $(0, +\infty)$. Let $a, b \in (0, +\infty)$ and $0 \le \theta \le 1$. Then, from the definition of the convexity, we have

$$-\log(\theta a + (1-\theta)b) < -\theta \log a - (1-\theta) \log b.$$

If we take the exponential of both sides, we obtain

$$a^{\theta}b^{1-\theta} < \theta a + (1-\theta)b.$$

For $\theta = \frac{1}{2}$, we have the arithmetic-geometric mean inequality: $\sqrt{ab} \leq \frac{a+b}{2}$.

Let $x, y \in \mathbb{R}^n \setminus \{0\}$, p > 1, and q such that $\frac{1}{p} + \frac{1}{q} = 1$. Consider

$$a = \frac{|[\boldsymbol{x}]_i|^p}{\sum_{j=1}^n |[\boldsymbol{x}]_j|^p}, \ b = \frac{|[\boldsymbol{y}]_i|^q}{\sum_{j=1}^n |[\boldsymbol{y}]_j|^q}, \ \theta = \frac{1}{p}, \text{ and } (1-\theta) = \frac{1}{q}.$$

Then we have

$$\left(\frac{|[\boldsymbol{x}]_i|^p}{\sum\limits_{j=1}^n |[\boldsymbol{x}]_j|^p}\right)^{\frac{1}{p}} \left(\frac{|[\boldsymbol{y}]_i|^q}{\sum\limits_{j=1}^n |[\boldsymbol{y}]_j|^q}\right)^{\frac{1}{q}} \leq \frac{|[\boldsymbol{x}]_i|^p}{p \sum\limits_{j=1}^n |[\boldsymbol{x}]_j|^p} + \frac{|[\boldsymbol{y}]_i|^q}{q \sum\limits_{j=1}^n |[\boldsymbol{y}]_j|^q}.$$

and summing over i, we obtain the Hölder inequality:

$$|\langle oldsymbol{x}, oldsymbol{y}
angle| \leq \|oldsymbol{x}\|_p \|oldsymbol{y}\|_q$$

where
$$\|\boldsymbol{x}\|_p := \left(\sum_{i=1}^n |[\boldsymbol{x}]_i|^p\right)^{\frac{1}{p}}$$
.

Theorem 6.6 Let $\{f_i\}_{i\in I}$ be a family of (finite or infinite) functions which are bounded from above and $f_i \in \mathcal{F}(\mathbb{R}^n)$. Then, $f(\boldsymbol{x}) := \sup_{i \in I} f_i(\boldsymbol{x})$ is convex on \mathbb{R}^n .

Proof:

For each $i \in I$, since $f_i \in \mathcal{F}(\mathbb{R}^n)$, its epigraph $E_i = \{(\boldsymbol{x}, y) \in \mathbb{R}^{n+1} \mid f_i(\boldsymbol{x}) \leq y\}$ is convex on \mathbb{R}^{n+1} by Theorem 6.2. Also their intersection

$$\bigcap_{i \in I} E_i = \bigcap_{i \in I} \left\{ (\boldsymbol{x}, y) \in \mathbb{R}^{n+1} \mid f_i(\boldsymbol{x}) \le y \right\} = \left\{ (\boldsymbol{x}, y) \in \mathbb{R}^{n+1} \mid \sup_{i \in I} f_i(\boldsymbol{x}) \le y \right\}$$

is convex by Exercise 2 of Section 1, which is exactly the epigraph of f(x).

6.2 Differentiable Convex Functions

Theorem 6.7 Let f be a continuously differentiable function. The following conditions are equivalent:

- 1. $f \in \mathcal{F}^1(\mathbb{R}^n)$.
- 2. $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle$, $\forall x, y \in \mathbb{R}^n$.
- 3. $\langle \nabla f(x) \nabla f(y), x y \rangle \ge 0, \ \forall x, y \in \mathbb{R}^n$.

Proof:

Left for exercise.

Theorem 6.8 If $f \in \mathcal{F}^1(\mathbb{R}^n)$ and $\nabla f(x^*) = 0$, then x^* is the global minimum of f(x) on \mathbb{R}^n .

Proof:

Left for exercise.

Lemma 6.9 If $f \in \mathcal{F}^1(\mathbb{R}^m)$, $b \in \mathbb{R}^m$, and $A : \mathbb{R}^n \to \mathbb{R}^m$, then

$$\phi(\boldsymbol{x}) = f(\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}) \in \mathcal{F}^1(\mathbb{R}^n).$$

Proof:

Left for exercise.

Example 6.10 The following functions are differentiable and convex:

1.
$$f(x) = e^x$$

2.
$$f(x) = |x|^p$$
, $p > 1$

3.
$$f(x) = \frac{x^2}{1+|x|}$$

4.
$$f(x) = |x| - \ln(1 + |x|)$$

5.
$$f(\boldsymbol{x}) = \sum_{i=1}^{m} e^{\alpha_i + \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle}$$

6.
$$f(x) = \sum_{i=1}^{m} |\langle a_i, x \rangle - b_i|^p, \quad p > 1$$

Theorem 6.11 Let f be a twice continuously differentiable function. Then $f \in \mathcal{F}^2(\mathbb{R}^n)$ if and only if

$$abla^2 f(x) \succeq O, \quad \forall x \in \mathbb{R}^n.$$

Proof:

Let $f \in \mathcal{F}^2(\mathbb{R}^n)$, and denote $x_{\tau} = x + \tau s$, $\tau > 0$. Then, from the previous result

$$0 \leq \frac{1}{\tau^2} \langle \nabla f(x_\tau) - \nabla f(x), x_\tau - x \rangle = \frac{1}{\tau} \langle \nabla f(x_\tau) - \nabla f(x), s \rangle$$
$$= \frac{1}{\tau} \int_0^\tau \langle \nabla^2 f(x + \lambda s) s, s \rangle d\lambda$$
$$= \frac{F(\tau) - F(0)}{\tau}$$

where $F(\tau) = \int_0^{\tau} \langle \nabla^2 f(x + \lambda s) s, s \rangle d\lambda$. Therefore, tending τ to 0, we get $0 \le F'(0) = \langle \nabla^2 f(x) s, s \rangle$, and we have the result.

Conversely, $\forall x \in \mathbb{R}^n$,

$$f(y) = f(x) + \langle \nabla f(x), y - x \rangle + \int_0^1 \int_0^{\tau} \langle \nabla^2 f(x + \lambda(y - x))(y - x), y - x \rangle d\lambda d\tau$$

 $\geq f(x) + \langle \nabla f(x), y - x \rangle.$

6.3 Differentiable Convex Functions with Lipschitz Continuous Gradients

Corollary 6.12 Let f be a two times continuously differentiable function. $f \in \mathcal{F}_L^{2,1}(\mathbb{R}^n)$ if and only if $O \leq \nabla^2 f(x) \leq LI$, $\forall x \in \mathbb{R}^n$.

Proof:

Left for exercise.

Theorem 6.13 Let f be a continuously differentiable function on \mathbb{R}^n , $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, and $\alpha \in [0, 1]$. Then the following conditions are equivalent:

1.
$$f \in \mathcal{F}_L^{1,1}(\mathbb{R}^n)$$
.

2.
$$0 \le f(\boldsymbol{y}) - f(\boldsymbol{x}) - \langle \boldsymbol{\nabla} f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle \le \frac{L}{2} \|\boldsymbol{x} - \boldsymbol{y}\|_2^2$$

3.
$$f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_2^2 \le f(y)$$
.