Given a positive integer p > 0,
1. Form (p 4 1)" points
<z'1 o in>T
Liyin,in — | =70 Ty T
p D p
where (i1,42,...,i,) € {0,1,...,p}"

2. Among all points x;, ;, . i,, find a point & which has the minimal value for the
objective function.

3. Return the pair (&, f(Z)) as the result.

Theorem 5.4 Let f(x*) be the global optimal value for (4). Then the uniform grid method yields

_ X L
f(@) = f(z") < b7
Proof:
Let * be a global optimal solution. Then there are coordinates (i1, 2, ...,%,) such that  :=
Tiy o, in < 5 < T 4141, int+1 =: Y. Observe that [y]; — [x]; = 1/p for i = 1,2,...,n and

[x*]; € [[z]i, [y]i] (1=1,2,...,n).
Consider & = (x + y)/2 and form a new point & as:

@), ::{ [yl if [2"); > [):

[x];, otherwise.

It is clear that |[z]; — [x*];] < 1/(2p) for i = 1,2,...,n. Then || — x*|x = max ] — [x7]i| <
<i<n

1/(2p). Since & belongs to the grid,

f@) = f(&") < f(@) - f(&") < L@ — 2|0 < L/(2p).

Let us define our goal

Find @ € B, such that f(x) — f(z*) < e. ‘

Corollary 5.5 The number of iterations necessary for the problem (4) to achieve the above goal
using the uniform grid method is at most
L n
2 .
(L] +2)

Proof:
Take p = [L/(2¢)] + 1. Then, p > L/(2¢) and from the previous theorem, f(&) — f(x*) <
L/(2p) < e. Observe that we constructed (p + 1)" points. 1

Consider the class of problems P defined as follows:

Model: min f(x),
TeB,
f(x) is loo-Lipschitz continuous on By,.
Oracle: Only function values are available
Approximate solution: | Find & € B, such that f(&) — f(z*) < ¢
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Theorem 5.6 For & < %, the number of iterations necessary for the class of problems P using any

method which uses only function evaluations is always at least (Léj)"

Proof:

Let p = Lij (which is > 1 from the hypothesis).

Suppose that there is a method which requires N < p™ calls of the oracle to solve the problem
in P.

Then, there is a point & € B, = {x ¢ R" | 0 < [z]; <1, i =1,2,...,n} where there is no test
points in the interior of B:={x |2 <x < & + e/p} where e = (1,1,...,1)T € R".

Let * := & + e/(2p) and consider the function f(x) := min{0, L|| — x*||sc — €}. Clearly, f is
{so-Lipschitz continuous with constant L and its global minimum is —e. Moreover, f(z) is non-zero
valued only inside the box B’ :={z | || — *||cc <¢/L}.

Since 2p < L/e, B' C {@ | |l — 2*]loc < 1/(2p)} C B.

Therefore, f(x) is equal to zero to all test points of our method and the accuracy of the method
is €.

If the number of calls of the oracle is less than p™, the accuracy can not be better than e. I

Theorem 5.6 supports the claim that the general optimization problem are unsolvable.

Example 5.7 Consider a problem defined by the following parameters. L = 2, n = 10, and
e = 0.01.

lower bound (L/(2¢))" ;1020 calls of the oracle

computational complexity of the oracle : at least n arithmetic operations

total complexity : 10%! arithmetic operations

CPU . 1GHz or 10? arithmetic operations per second
total time . 10'? seconds

one year : <3.2x 107 seconds

we need : >10000 years

e If we change n by n + 1, the # of calls of the oracle is multiplied by 100.
o If we multiply € by 2, the arithmetic complexity is reduced by 1000.

We know from Corollary 5.5 that the number of iterations of the uniform grid method is at least
(LL/(2e)]+2)™. Theorem 5.6 showed that any method which uses only function evaluations requires
at least (|L/(2¢)])™ calls to have a better performance than . If for instance we take e = O(L/n),
these two bounds coincide up to a constant factor. In this sense, the uniform grid method is an
optimal method for the class of problems P.

5.3 Steepest Descent Method

Consider f: R™ — R a differentiable function on its domain.

Steepest Descent Method
Choose: xpc R"
Iterate: xp11 =xr — hiVf(xg), k=0,1,...

We consider four strategies for the step-size hy:

1. Constant Step
The sequence {hy}72, is chosen in advance. For example
hi :=h >0,
h

hi = .
SN/ |

This is the simplest strategy.
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2. Exact Line Search (Cauchy Step-Size)

The sequence {hk}k 0 is chosen such that
k arg %1;8 (mk (ch))

This choice is only theoretical since even for the one dimensional case, it is very difficult and
expensive.

3. Goldstein-Armijo Rule

Find a sequence {hy}32, such that

oV f(xr), T — Ty 1)
B(V f(xr), ) — Try1)

IV IA

where 0 < o < 8 < 1 are fixed parameters.
Since f(xr4+1) = f(xr — eV f(zr)),

Fla) = Bhel|V F(@i)3 < flanin) < flan) — ahil|VF (@3-
The acceptable steps exist unless f(xg4+1) = f(xr — hV f(xk)) is not bounded from below.

4. Barzilai-Borwein Step-Size'
Let us define sg_1 := @ — xp—1 and y,_; := Vf(xr) — Vf(xr—_1). Then, we can define the
Barzilai-Borwein (BB) step sizes {h}}2°, and {h2}22:

[sk—1]13

hi = —F2
R (sk_1, Y1)

o (Sk-1,Yp_1)
lye—1l3

k-
The first step-size is the one which minimizes the following secant condition ||%sk,1 — Y13
while the second one minimizes ||sy_1 — hyj_1||3.

Now, consider the problem

where f € Ci’l(R"), and f(zx) is bounded from below.

Let us evaluate the result of one step of the steepest descent method.
Consider y =  — hV f(x). From Lemma 3.5,

) < f@)+ (V@)Y - )+ %y -l

h2
= (@)~ V@3 + IV )3

1J. Barzilai and J. M. Borwein, “T'wo-point step size gradient methods,” IMA Journal of Numerical Analysis, 8
(1988), pp. 141-148.

14



