
Given a positive integer p > 0,

1. Form (p+ 1)n points

xi1,i2,...,in =

(
i1
p
,
i2
p
, . . . ,

in
p

)T

where (i1, i2, . . . , in) ∈ {0, 1, . . . , p}n.

2. Among all points xi1,i2,...,in , find a point x̄ which has the minimal value for the
objective function.

3. Return the pair (x̄, f(x̄)) as the result.

Theorem 5.4 Let f(x∗) be the global optimal value for (4). Then the uniform grid method yields

f(x̄)− f(x∗) ≤ L

2p
.

Proof:
Let x∗ be a global optimal solution. Then there are coordinates (i1, i2, . . . , in) such that x :=

xi1,i2,...,in ≤ x∗ ≤ xi1+1,i2+1,...,in+1 =: y. Observe that [y]i − [x]i = 1/p for i = 1, 2, . . . , n and
[x∗]i ∈ [[x]i, [y]i] (i = 1, 2, . . . , n).

Consider x̂ = (x+ y)/2 and form a new point x̃ as:

[x̃]i :=

{
[y]i, if [x∗]i ≥ [x̂]i
[x]i, otherwise.

It is clear that |[x̃]i − [x∗]i| ≤ 1/(2p) for i = 1, 2, . . . , n. Then ∥x̃ − x∗∥∞ = max
1≤i≤n

|[x̃]i − [x∗]i| ≤

1/(2p). Since x̃ belongs to the grid,

f(x̄)− f(x∗) ≤ f(x̃)− f(x∗) ≤ L∥x̃− x∗∥∞ ≤ L/(2p).

Let us define our goal

Find x ∈ Bn such that f(x)− f(x∗) < ε.

Corollary 5.5 The number of iterations necessary for the problem (4) to achieve the above goal
using the uniform grid method is at most(⌊

L

2ε

⌋
+ 2

)n

.

Proof:
Take p = ⌊L/(2ε)⌋ + 1. Then, p > L/(2ε) and from the previous theorem, f(x̄) − f(x∗) ≤

L/(2p) < ε. Observe that we constructed (p+ 1)n points.

Consider the class of problems P defined as follows:

Model: min
x∈Bn

f(x),

f(x) is ℓ∞-Lipschitz continuous on Bn.
Oracle: Only function values are available
Approximate solution: Find x̄ ∈ Bn such that f(x̄)− f(x∗) < ε
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Theorem 5.6 For ε < L
2 , the number of iterations necessary for the class of problems P using any

method which uses only function evaluations is always at least (⌊ L
2ε⌋)

n.

Proof:
Let p = ⌊ L

2ε⌋ (which is ≥ 1 from the hypothesis).
Suppose that there is a method which requires N < pn calls of the oracle to solve the problem

in P.
Then, there is a point x̂ ∈ Bn = {x ∈ Rn | 0 ≤ [x]i ≤ 1, i = 1, 2, . . . , n} where there is no test

points in the interior of B := {x | x̂ ≤ x ≤ x̂+ e/p} where e = (1, 1, . . . , 1)T ∈ Rn.
Let x∗ := x̂+ e/(2p) and consider the function f̄(x) := min{0, L∥x− x∗∥∞ − ε}. Clearly, f̄ is

ℓ∞-Lipschitz continuous with constant L and its global minimum is −ε. Moreover, f̄(x) is non-zero
valued only inside the box B′ := {x | ∥x− x∗∥∞ ≤ ε/L}.

Since 2p ≤ L/ε, B′ ⊆ {x | ∥x− x∗∥∞ ≤ 1/(2p)} ⊆ B.
Therefore, f̄(x) is equal to zero to all test points of our method and the accuracy of the method

is ε.
If the number of calls of the oracle is less than pn, the accuracy can not be better than ε.

Theorem 5.6 supports the claim that the general optimization problem are unsolvable.

Example 5.7 Consider a problem defined by the following parameters. L = 2, n = 10, and
ε = 0.01.

lower bound (L/(2ε))n : 1020 calls of the oracle
computational complexity of the oracle : at least n arithmetic operations
total complexity : 1021 arithmetic operations
CPU : 1GHz or 109 arithmetic operations per second
total time : 1012 seconds
one year : ≤ 3.2× 107 seconds
we need : ≥ 10000 years

• If we change n by n+ 1, the # of calls of the oracle is multiplied by 100.

• If we multiply ε by 2, the arithmetic complexity is reduced by 1000.

We know from Corollary 5.5 that the number of iterations of the uniform grid method is at least
(⌊L/(2ε)⌋+2)n. Theorem 5.6 showed that any method which uses only function evaluations requires
at least (⌊L/(2ε)⌋)n calls to have a better performance than ε. If for instance we take ε = O(L/n),
these two bounds coincide up to a constant factor. In this sense, the uniform grid method is an
optimal method for the class of problems P.

5.3 Steepest Descent Method

Consider f : Rn → R a differentiable function on its domain.

Steepest Descent Method

Choose: x0 ∈ Rn

Iterate: xk+1 = xk − hk∇f(xk), k = 0, 1, . . .

We consider four strategies for the step-size hk:

1. Constant Step

The sequence {hk}∞k=0 is chosen in advance. For example

hk := h > 0,

hk :=
h√
k + 1

.

This is the simplest strategy.

13



2. Exact Line Search (Cauchy Step-Size)

The sequence {hk}∞k=0 is chosen such that

hk := argmin
h≥0

f(xk − h∇f(xk)).

This choice is only theoretical since even for the one dimensional case, it is very difficult and
expensive.

3. Goldstein-Armijo Rule

Find a sequence {hk}∞k=0 such that

α⟨∇f(xk),xk − xk+1⟩ ≤ f(xk)− f(xk+1),

β⟨∇f(xk),xk − xk+1⟩ ≥ f(xk)− f(xk+1),

where 0 < α < β < 1 are fixed parameters.

Since f(xk+1) = f(xk − hk∇f(xk)),

f(xk)− βhk∥∇f(xk)∥22 ≤ f(xk+1) ≤ f(xk)− αhk∥∇f(xk)∥22.

The acceptable steps exist unless f(xk+1) = f(xk − h∇f(xk)) is not bounded from below.

4. Barzilai-Borwein Step-Size1

Let us define sk−1 := xk − xk−1 and yk−1 := ∇f(xk)−∇f(xk−1). Then, we can define the
Barzilai-Borwein (BB) step sizes {h1k}∞k=1 and {h2k}∞k=1:

h1k :=
∥sk−1∥22

⟨sk−1,yk−1⟩
,

h2k :=
⟨sk−1,yk−1⟩
∥yk−1∥22

.

The first step-size is the one which minimizes the following secant condition ∥ 1
hsk−1 −yk−1∥22

while the second one minimizes ∥sk−1 − hyk−1∥22.

Now, consider the problem

min
x∈Rn

f(x)

where f ∈ C1,1
L (Rn), and f(x) is bounded from below.

Let us evaluate the result of one step of the steepest descent method.
Consider y = x− h∇f(x). From Lemma 3.5,

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥22

= f(x)− h∥∇f(x)∥22 +
h2L

2
∥∇f(x)∥22

1J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,” IMA Journal of Numerical Analysis, 8
(1988), pp. 141–148.
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