3.1 Exercises

1. Prove Lemma 3.6.

4 Optimality Conditions for Differentiable Functions on R"

Let f: R™ — R be a differentiable function on R™, & € R", and s be a direction in R™ such that
||s|]]2 = 1. Consider the local decrease (or increase) of f(x) along s:

A(s) = lim ~ [f(2 + as) — f(2)].

a—0 «

Since f(& + as) — f(&) = a(V f(&), s) + o(||as]|2), we have A(s) = (V f(x), s).
Using the Cauchy-Schwarz inequality —||z|2||yll2 < (x,y) < ||z|2ly]2,

Als) = (Vf(@),s) = -[IVf(@)]2-
Choosing in particular the direction s = =V f(2)/||V f(Z)]|2,
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AE) =~ (VH@) g Het ) = IV @)

Thus, the direction —V f(&) is the direction of the fastest local decrease of f(x) at point &.

Theorem 4.1 (First-order necessary optimality condition) Let * be a local minimum of
the differentiable function f(x). Then

Vf(z*)=0.
Proof:
Let * be the local minimum of f(x). Then, there is r > 0 such that for all y with ||y —x*||s <7,
fly) > f(z).

Since f is differentiable on R",
fy) = f(&) +(Vf(x"),y —z) +o(ly — =*[2) = f(=").
Dividing by ||y — «*||2, and taking the limit y — x*,
(Vf(x*),s) >0, VseR", |s|2=1.
Consider the opposite direction —s, and then we conclude that
(Vf(x¥),s) =0, VseR" [s]2=1
Choosing s =e; (i=1,2,...,n), we conclude that V f(x*) = 0. I

Remark 4.2 For the first-order sufficient optimality condition, we need convexity for the function

f(@).

Corollary 4.3 Let * be a local minimum of a differentiable function f(x) subject to linear equality
constraints

rxel:={xecR"| Az =0b} #10,

where A € R"™*™ b e R™, m < n.
Then, there exists a vector of multipliers A* € R™ such that

Vf(x*) = ATA"



Proof:
Consider the vectors u; (i = 1,2,...,k) with £ > n —m which form an orthonormal basis of the
null space of A. Then, € L can be represented as

k
r=x(t):=x" + Ztiuu t € R*.
i=1
Moreover, the point ¢t = 0 is the local minimal solution of the function ¢(t) = f(x(t)).
From Theorem 4.1, ¢/(0) = 0. That is,

d
Now there is t* € RF and A* € R™ such that
k
Vi) =3 tiu+ AN
i=1

Foreachi=1,2,... k,
(Vf(x"),u) =t; =0.
Therefore, we have the result. 1

The following type of result is called theorems of the alternative, and are closed related to duality
theory in optimization.

Corollary 4.4 Given A € R"™*", b e R™, ¢ € R", n € R, either

{ <f4’;3>:<b77 has a solution € R", (1)
or
(b,A) >0
{ ATx=0
or has a solution A € R™, (2)
(b,A) >n
{ ATx=c¢c

but never both

Proof:

Let us first show that if 3z € R" satisfying (1), AX € R™ satisfying (2). Let us assume by
contradiction that IX. Then (A, Az) = (X, b) and in the homogeneous case it gives 0 = (A, b) > 0
and in the non-homogeneous case it gives n > (¢, x) = (A, b) > n. Both of cases are impossible.

Now, let us assume that Ax € R" satisfying (1). If additionally Az € R™ such that Ax = b, it
means that the columns of the matrix A do not spam the vector b. Therefore, there is 0 # A € R™
which is orthogonal to all of these columns and (b, A) # 0. Selecting the correct sign, we constructed
a X which satisfies the homogeneous system of (2). Now, if for all & such that Az = b we have
(c,x) > n, it means that the minimization of the function f(x) = (¢, ) subject to Az = b has an
optimal solution «* with f(x*) > 7 (since 3z € R" such that Ax = b, we can always assume that
m < n eliminating redundant linear constraints from the system. If n = m and A is nonsingular,
take A = A~ Zc. Otherwise, we can eliminate again redundant linear constraint to have n > m).
From Corollary 4.3, 3\ € R™ such that ATX = ¢, and (b, A) = (x*, ATX) = (x*,¢) > n. 1

If f(x) is twice differentiable at & € R", then for y € R", we have

Vi(y) = V@) + V(@) (y—2)+o(ly—z|2),

where o(r) is such that lim,_,q ||o(r)||2/r = 0 and o(0) = 0.



Theorem 4.5 (Second-order necessary optimality condition) Let x* be a local minimum of
a twice continuously differentiable function f(x). Then

Vf(x*) =0, V2f(z*) = O.

Proof:
Since x* is a local minimum of f(x), 3r > 0 such that for all y € R"™ which satisfy ||y —a*||2 < r,

fly) = f(=).
From Theorem 4.1, V f(x*) = 0. Then
fly) =1z + %(VQf(ZB*)(y — @),y —a) +oly —z|I3) > f(z").
And (V2 f(x*)s,s) >0, Vs € R" with ||s]]2 = 1. "

Theorem 4.6 (Second-order sufficient optimality condition) Let the function f(x) be twice
continuously differentiable on R™, and let x* satisfy the following conditions:

Vf(x*) =0, Vif(z*) > O.
Then, x* is a strict local minimum of f(x).
Proof:

In a small neighborhood of *, function f(x*) can be represented as:

fly) = fx") + %<V2f(fﬂ*)(y —a’),y —a) +oly — z7|[3).
Since o(r)/r — 0, there is a 7 > 0 such that for all r € [0, 7],
o(r)] < M (V2 F (")),

where A\ (V2 f(z*)) is the smallest eigenvalue of the symmetric matrix V2 f(a*) which is positive.
Then

* 1 * * *
F) = f@) + S0V @)y — 2715+ ollly — 27[13).
Considering that 7 < 1, |o(r?)| < r2/4\ (V2 f(x*)) for r € [0, 7], finally

1

Fy) = f@) + (V@) ]ly — 27|15 > f(=27).

4.1 Exercises

1. Let f:R® - R, g : R® — R™ continuously differentiable functions and h € R™. Define the
following optimization problem.

minimize  f(x)
subject to  g(x) = h
xz eR"

Write the Karush-Kuhn-Tucker (KKT) conditions corresponding to the above problem.

2. In view of Theorem 4.6, find a twice continuously differentiable function on R™ which satisfies
Vf(x*) =0, WV2f(x*) > O, but z* is not a local minimum of f(x).

3. Let f : R® — R be a continuous differentiable and convex function. If * € R" is such that
V f(x*) = 0, then show that * is a global minimum for f(x).
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5 Algorithms for Minimizing Unconstrained Functions

5.1 General Minimization Problem and Terminologies
Definition 5.1 We define the general minimization problem as follows

minimize  f(x)
subject to  fj(x) &0, j=1,2,...,m (3)
x €S,

where f:R" = R, f; :R" =R (j =1,2,...,m), the symbol & could be =, >, or <, and § C R".
Definition 5.2 The feasible set @ of (3) is
Q={xecS| fi(x)&0, (j=1,2,...,m)}.
In the following items we assume S = R".

o If Q =R", (3) is a unconstrained optimization problem.
o If Q@ CR", (3) is a constrained optimization problem.
e If all functionals f(x), f;(x) are differentiable, (3) is a smooth optimization problem.

e If one of functionals f(x), f;j(«) is non-differentiable, (3) is a non-smooth optimization prob-
lem.

e If all constraints are linear fj(x) = (aj,x) +b; (j = 1,2,...,m), (3) is a linear constrained
optimization problem.

— In addition, if f(z) is linear, (3) is a linear programming problem.

— In addition, if f(x) is quadratic, (3) is a quadratic programming problem.

o If f(x), fij(x) (j = 1,2,...,m) are quadratic, (3) is a quadratically constrained quadratic
programming problem.

Definition 5.3 x* is called a global optimal solution of (3) if f(x*) < f(x), Va € Q. Moreover,
f(x*) is called the global optimal value. x* is called a local optimal solution of (3) if there exists
an open ball B(x*,¢) := {& € R" | || — x*|]2 < €} such that f(z*) < f(x), Vo € B(z*,e)NQ.
Moreover, f(x*) is called a local optimal value.

5.2 Complexity Bound for a Global Optimization Problem on the Unit Box

Consider one of the simplest problems in optimization, that is, minimizing a function on the n-
dimensional box.

minimize  f(x) ()
subject to z € B, :={x cR" |0<[x]; <1, i=1,2,...,n}.

To be coherent, we use the fo.-norm:

lzllo = max [fa];].

Let us also assume that f(x) is Lipschitz continuous on By:

[f(®) = f(y)| < Lll# - ylloo,  Va,y € Bp.

Let us define a very simple method to solve (4), the uniform grid method.
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