ICT.H409

Optics in Information Processing IV

Masahiro Yamaguchi yamaguchi.m.aa@m.titech.ac.jp

Impulse response (PSF) and transfer function of a lens system

Image formation by a lens system

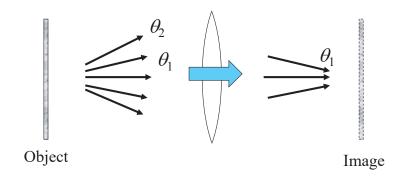
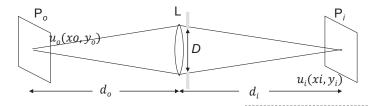


Image formation by a lens system

- In the image formation by a lens system, highfrequency component is blocked by the lens aperture.
- Then it works as low-pass filtering, and the resolution is limited.
- In most cases, it can be modeled as a linear shift-invariant system, and characterized by the impulse response, called "point spread function (PSF)."

10

Impulse response of a lens system



$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

Lens formula

 $u_o(xo, y_o), u_i(x_i, y_i)$: Complex amplitude at P_o , P_i planes

$$M = -\frac{d_i}{d_o}$$
 Magnification

P(x,y)Pupil function

The input-output relationship becomes

$$u_i(x_i, y_i) = A \int \int_{-\infty}^{\infty} h(x_i, y_i; x_o, y_o) u_o(x_o, y_o) dx_o dy_o$$

$$h(x_i, y_i; x_o, y_o) = \frac{1}{\lambda^2 d_i d_o} \int \int_{-\infty}^{\infty} P(x, y) \exp\{-j \frac{2\pi}{\lambda d_i} [(x_i - Mx_o)x + (y_i - My_o)y]\} dxdy$$

Substituting

$$h(x_i - \tilde{x}_o, y_i - \tilde{y}_o) = \frac{d_i}{d_o} \int \int_{-\infty}^{\infty} P(\lambda d_i \tilde{x}, \lambda d_i \tilde{y}) \exp\{-j2\pi[(x_i - \tilde{x}_o)\tilde{x} + (y_i - \tilde{y}_o)\tilde{y}]\} d\tilde{x} d\tilde{y}$$

$$h(x_i, y_i) = M \mathcal{F}\{P(\lambda d_i x, \lambda d_i y)\} = M P_f\left(\frac{x_i}{\lambda d_i}, \frac{y_i}{\lambda d_i}\right)$$

$$u_i(x_i, y_i) = \frac{1}{M} \int \int_{-\infty}^{\infty} h(x_i - \tilde{x}_o, y_i - \tilde{y}_o) u_{oM}(\tilde{x}_o, \tilde{y}_o) d\tilde{x}_o d\tilde{y}_o$$

Let us define
$$h_C(x_i, y_i) = \frac{1}{M} h(x_i, y_i) = \mathcal{F}\{P(\lambda d_i x, \lambda d_i y)\} = P_f\left(\frac{x_i}{\lambda d_i}, \frac{y_i}{\lambda d_i}\right)$$

$$u_i(x_i, y_i) = \int \int_{-\infty}^{\infty} h_C(x_i - \tilde{x}_o, y_i - \tilde{y}_o) u_{oM}(\tilde{x}_o, \tilde{y}_o) d\tilde{x}_o d\tilde{y}_o = h_C(x_i, y_i) * u_{oM}(x_i, y_i)$$

Convolution

Impulse response: $h_C(x_i, y_i)$

Coherent imaging case

Coherent case

The point spread function (impulse response) of an imaging lens system is the Fourier transform of a pupil function.

Input:
$$u_{oM}(\tilde{x}_o, \tilde{y}_o) = \frac{1}{M} u_o \left(\frac{\tilde{x}_o}{M}, \frac{\tilde{y}_o}{M} \right)$$

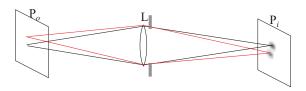
-- Complex amplitude of the magnified object.

Output: $u_i(x_i, y_i)$ -- Complex amplitude of the image.

Impulse response (PSF): $h_C(x_i, y_i) = \mathcal{F}\{P(\lambda d_i x, \lambda d_i y)\}$

-- Fourier transform of the pupil function

Incoherent case



Each point source at P_0 plane does not interfere with the light from other point sources at observation plane.

Intensity distribution at P_0 plane: $I_0(x_0, y_0) = |u_0(x_0, y_0)|^2$

$$I_{oM}(x_o, y_o) = |u_{oM}(x_o, y_o)|^2$$

Intensity distribution at P_i plane: $I_i(x_i, y_i) = |u_i(x_i, y_i)|^2$

$$I_{i}(x_{i}, y_{i}) = \int \int_{-\infty}^{\infty} |h(x_{i} - \tilde{x}_{o}, y_{i} - \tilde{y}_{o})|^{2} I_{oM}(\tilde{x}_{o}, \tilde{y}_{o}) d\tilde{x}_{o} d\tilde{y}_{o} = |h(x_{i}, y_{i})|^{2} * I_{oM}(x_{i}, y_{i})$$

$$I_{I}(x_{i}, y_{i}) = h_{I}(x_{i}, y_{i}) * I_{oM}(x_{i}, y_{i})$$

$$h_{I}(x_{i}, y_{i}) = |h(x_{i} - \tilde{x}_{o}, y_{i} - \tilde{y}_{o})|^{2} = |\mathcal{F}\{P(\lambda d_{i}x, \lambda d_{i}y)\}|^{2}$$

Incoherent imaging case

The point spread function (impulse response) of an imaging lens system is the Fourier energy spectrum of a pupil function.

Input:
$$I_{oM}(\tilde{x}_o, \tilde{y}_o) = \frac{1}{M^2} I_o\left(\frac{\tilde{x}_o}{M}, \frac{\tilde{y}_o}{M}\right)$$

-- Intensity of the magnified object.

Output: $I_i(x_i, y_i)$ -- Intensity of the image.

Impulse response (PSF): $h_I(x_i, y_i) = |\mathcal{F}\{P(\lambda d_i x, \lambda d_i y)\}|^2$

-- Fourier power spectrum of the pupil function

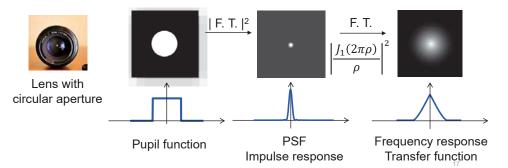
Frequency response

(Transfer function)

Fourier transform of the impulse response

Incoherent imaging case

$$\begin{split} H_I(u,v) &= \mathcal{F}\{h_I(x_i,y_i)\} = \mathcal{F}\{|\mathcal{F}\{P(\lambda d_i x,\lambda d_i y)\}|^2\} \\ &= \int \int_{-\infty}^{\infty} P(\tilde{u},\tilde{v}) \, P^*(\tilde{u}+u,\tilde{v}+v) \, d\tilde{u} \, d\tilde{v} \end{split} \tag{Autocorrelation}$$



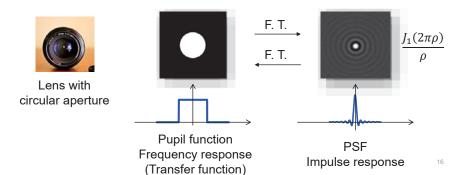
Frequency response

(Transfer function)

Fourier transform of the impulse response

Coherent imaging case

$$\begin{split} &H_{\mathcal{C}}(u,v)=\mathcal{F}\{h_{\mathcal{C}}(x_i,y_i)\}=\mathcal{F}\big\{\mathcal{F}\{P(\lambda d_ix,\lambda d_iy)\}\big\}=P(-\lambda d_ix,-\lambda d_iy)\\ &\mathcal{F}\{\operatorname{circ}(\,r\,)\}=\operatorname{jinc}(2\pi\rho)=\frac{J_1(2\pi\rho)}{\rho}\quad\text{(Fourier-Bessel transform)}\\ &J_1:\operatorname{Bessel function of the first kind, order 1.} \end{split}$$



Optical transfer function (OTF)

Frequency response of an incoherent imaging system after normalization is called OTF. OTF is commonly used for the characterization of an optical imaging system.

$$OTF(u, v) = \frac{H_I(u, v)}{H_I(0, 0)}$$

18

Modulation Transfer Function

MTF =
$$\frac{\text{Contrast of output image } (u,v)}{\text{Contrast of input image } (u,v)}$$

$$MTF = | OTF |$$

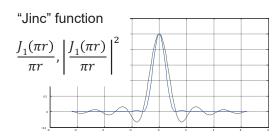
$$OTF(u,v) = MTF(u,v) \exp\{j\phi(u,v)\}$$

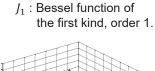
 $\phi(u,v)$: Phase transfer function (PTF)

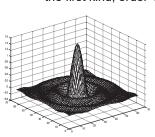
Impulse response of a circular aperture

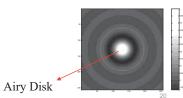
$$\begin{aligned} h_I(x_i, y_i) &= |\mathcal{F}\{P(\lambda d_i x, \lambda d_i y)\}|^2 \\ &= \left| P_f\left(\frac{x_i}{\lambda d_i}, \frac{y_i}{\lambda d_i}\right) \right|^2 = \left| \frac{\pi D^2}{2} \cdot \frac{J_1\left(\frac{\pi D r_i}{\lambda d_i}\right)}{\frac{\pi D r_i}{\lambda d_i}} \right|^2 \end{aligned}$$

$$h_I(x_i, y_i) = 0$$
 when $\frac{Dr_i}{\lambda d_i} = 1.220$



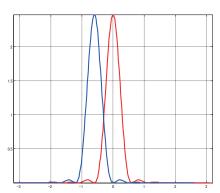


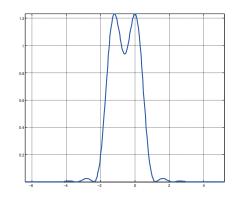




Resolution of a lens system

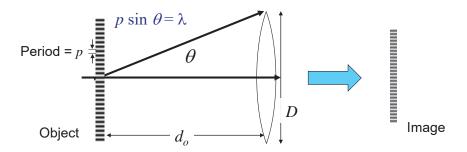
- Rayleigh criterion -





Rayleigh limit $L = 1.22 \frac{\lambda d_i}{D}$ (Diffraction limit)

Estimating the resolution of a lens system



$$\sin\theta \cong \theta \cong \frac{D}{2do}$$
 \implies $U_{max} = \frac{1}{p_{min}} = \frac{\sin\theta}{\lambda} \cong \frac{D}{2\lambda d_o}$ or $p_{min} = \frac{2\lambda do}{D}$

Rayleigh limit (image plane)

$$L = 1.22 \frac{\lambda d_i}{D}$$
 \longrightarrow Object plane $\frac{L}{M} = 1.22 \frac{\lambda d_i}{DM} = 1.22 \frac{\lambda d_o}{D}$

Example

F-number of a lens system $F = \frac{f}{D}$

$$\lambda = 0.5 \mu \text{m}$$
 $-d_o = 20 \text{m}$

$$f = 20$$
mm
 $F = 2$

Lens diameter $D = \frac{f}{F} = 10mm$

$$L_o = 1.22 \frac{\lambda d_o}{D} = 1.22 \frac{0.5 \times 10^{-6} \times 20}{10 \times 10^{-3}} = 1.22 \times 10^{-3} [m]$$

Object larger than \cong 1.22mm can be resolved.

23