3.5 線形方程式系の解の存在について

定理3.1:

(a) 線形方程式系 Ax = b (3) が解をもつ.

$$\updownarrow$$

 $rank (\boldsymbol{a}_{\cdot 1} \ \boldsymbol{a}_{\cdot 2} \ \dots \ \boldsymbol{a}_{\cdot n} \ \boldsymbol{b}) = rank (\boldsymbol{a}_{\cdot 1} \ \boldsymbol{a}_{\cdot 2} \ \dots \ \boldsymbol{a}_{\cdot n}) .$

(b) 線形方程式系 Ax = b (3) が唯一の解をもつ.

 $rank (\boldsymbol{a}_{\cdot 1} \ \boldsymbol{a}_{\cdot 2} \ \dots \ \boldsymbol{a}_{\cdot n} \ \boldsymbol{b}) = rank (\boldsymbol{a}_{\cdot 1} \ \boldsymbol{a}_{\cdot 2} \ \dots \ \boldsymbol{a}_{\cdot n}) = n .$

[問題 03-03] $m{a}_{\cdot 1}, m{a}_{\cdot 2}, \dots, m{a}_{\cdot n} \in \mathbb{R}^m$ とし, $m{a}_{\cdot 1}, m{a}_{\cdot 2}, \dots, m{a}_{\cdot r}$ は線形独立,また,任意の $i \geq r+1$ に対して, $m{a}_{\cdot 1}, m{a}_{\cdot 2}, \dots, m{a}_{\cdot r}, m{a}_{\cdot i}$ は線形従属であると仮定する.この時,線形方程式系 $\sum_{j=1}^r m{a}_{\cdot j} x_j = m{b}$ が解をもつための必要十分条件は,線形方程式系 $\sum_{j=1}^r m{a}_{\cdot j} x_j = m{b}$ が解をもつことであることを証明せよ.

 ${[問題\ 03-04]\over r}$ $m{a}_{\cdot 1},m{a}_{\cdot 2},\dots,m{a}_{\cdot r}$ \in \mathbb{R}^m を線形独立と仮定する.このとき,線形方程式系 $\sum_{j=1}^rm{a}_{\cdot j}x_j=m{b}$ が解をもつための必要十分条件は

$$rank (\boldsymbol{a}_{.1} \ \boldsymbol{a}_{.2} \ \dots \ \boldsymbol{a}_{.r} \ \boldsymbol{b}) = rank (\boldsymbol{a}_{.1} \ \boldsymbol{a}_{.2} \ \dots \ \boldsymbol{a}_{.r})$$

であることを証明せよ.

[問題 03-05] $a_{\cdot 1}, a_{\cdot 2}, \dots, a_{\cdot n} \in \mathbb{R}^m$ とする.以下の (a) と (b) を証明せよ.

(a) 線形方程式系 $\sum_{j=1}^n oldsymbol{a}_{\cdot j} x_j = oldsymbol{b}$ が解をもつ.

$$\Downarrow$$

 $rank(a_{.1} \ a_{.2} \ \dots \ a_{.n} \ b) = rank(a_{.1} \ a_{.2} \ \dots \ a_{.n})$.

(b) 線形方程式系 $\sum_{j=1}^n oldsymbol{a}_{\cdot j} x_j = oldsymbol{b}$ が唯一の解をもつ.

$$\downarrow$$

 $\operatorname{rank}(\boldsymbol{a}_{\cdot 1} \ \boldsymbol{a}_{\cdot 2} \ \dots \ \boldsymbol{a}_{\cdot n} \ \boldsymbol{b}) = \operatorname{rank}(\boldsymbol{a}_{\cdot 1} \ \boldsymbol{a}_{\cdot 2} \ \dots \ \boldsymbol{a}_{\cdot n}) = n \ .$

[問題 03-06] $m{A}=m{(a^1\ a^2\ \cdots\ a^n)}$ を m imes n 行列, $m{b}\in\mathbb{R}^m$ とする.ただし, $m{a}^j\in\mathbb{R}^m$ ($j=1,2,\ldots,n$)とする.この時,

- (i) 行列 A の階数の定義を述べよ.
- (ii) 線形方程式系 Ax=b が解をもつための必要十分条件は『A の階数と $m\times(n+1)$ 行列 $(a^1\ a^2\ \cdots a^n\ b)$ の階数が一致することである』を証明せよ.

系 3 . 2 : m=n の場合,以下の(a),(b),(c),(d),(e) は全て同値である.

- (a) 線形方程式系(3)は唯一の解をもつ.
- (b) $\det A \neq 0$.
- (c) A は逆行列をもつ.
- (d) $a_{\cdot 1}, a_{\cdot 2}, \ldots, a_{\cdot n}$ は線形独立である.
- (e) a_1, a_2, \ldots, a_n は線形独立である.

[問題 03-07] Farkas の補題

 $m{a}_i \in \mathbb{R}^m \quad (i=1,2,\ldots,n)$, $m{b} \in \mathbb{R}^m$ に対して , 以下の 2 組の等式・不等式について考える .

(a)
$$\sum_{i=1}^{n} a_i x_i = b$$
, $x_i \ge 0$ $(i = 1, 2, ..., n)$,

(b)
$$y \in \mathbb{R}^m$$
, $(a_i)^T y \le 0$ $(i = 1, 2, ..., n)$, $b^T y > 0$

この時,

が成立する. m=2 の場合について,この命題を図を用いて確かめよ.また,一般の m,n の場合について,この命題の一部『(a) が解をもつ \Rightarrow (b) が解を持たない』を証明せよ.

[問題 03-08] Gordan の定理

上記の [問題 03-07] と同様の考察を次の (a), (b) に対して行え.

(a)
$$\sum_{i=1}^{n} a_i x_i = 0$$
, $0 \le x = (x_1, x_2, \dots, x_n)^T \ne 0$,

(b)
$$y \in \mathbb{R}^m$$
, $(a_i)^T y > 0$ $(i = 1, 2, ..., n)$

4 行列式

正方行列 $A \in \mathbb{R}^{n \times n}$ の 行列式 は以下のような計算式で定義される.

$$\det(\mathbf{A}) := \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}.$$

ただし, S_n は n 個の要素を置換する写像の集合からなる \underline{n} 次対称群 であり, $\mathrm{sign}(\cdot)$ は置換写像の符号を表す.つまり,

$$\sigma := \left(\begin{array}{ccc} 1 & 2 & \cdots & n \\ i_1 & i_2 & \cdots & i_n \end{array}\right) \in S_n$$

は $\sigma(1)=i_1,\;\sigma(2)=i_2,\;\ldots,\;\sigma(n)=i_n$ を表し,

$$\operatorname{sign}(\sigma) := \left\{ egin{array}{ll} 1 \; , \; \sigma$$
が偶置換のとき $-1 \; , \; \sigma$ が奇置換のとき

 $\det(A)$ を |A| とも表記する.

例:2次元の場合

 $m{A}=(m{a}_1\ m{a}_2)\in\mathbb{R}^{2 imes2}$ とすると, $m{A}$ の行列式の絶対値 $|\det(m{A})|$ は $m{a}_1$ と $m{a}_2$ で作られる平行四辺形の面積となり,行列式の符号は $m{a}_1$ と $m{a}_2$ の位置に関する『向き』を表している(図 13).

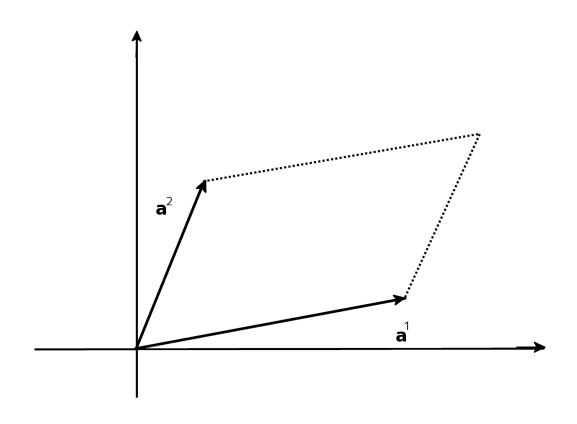


図 13: $a_1, a_2 \in \mathbb{R}^2$ によって定められた平行四辺形.

[問題 04-01] $a_1,a_2\in\mathbb{R}^2$, $A=(a_1\ a_2)$ とする.このとき, a_1 , a_2 が作る平行四辺形の面積は $|\det(A)|$ に一致することを示せ.

例:3次元の場合

 $A=(a_1\ a_2\ a_3)\in\mathbb{R}^{3 imes3}$ とすると,A の行列式の絶対値 $|\det(A)|$ は a_1 , a_2 , a_3 で作られる平行六面体の体積となり, a_1 , a_2 , a_3 はそれらの位置に関する『向き』を表している(図 14).

定理 4.1 : $a_1,a_2,\ldots,a_n,b\in\mathbb{R}^n$, $lpha\in\mathbb{R}$ とすると

(a)
$$\det(\mathbf{a}_1 \dots \mathbf{a}_{i-1} \ \alpha \mathbf{a}_i + \mathbf{b} \ \mathbf{a}_{i+1} \dots \mathbf{a}_n) = \alpha \det(\mathbf{A}) + \det(\mathbf{a}_1 \ \mathbf{a}_2 \dots \mathbf{a}_{i-1} \ \mathbf{b} \ \mathbf{a}_{i+1} \dots \mathbf{a}_n);$$

(b)
$$\det(a_1 \dots a_{i-1} \ a_i + \alpha a_j \ a_{i+1} \dots a_n) = \det(A) \quad (j = 1, 2, \dots, n, \ j \neq i);$$

(c)
$$\det(a_1 \dots a_{i-1} \ a_j \ a_{i+1} \dots a_{j-1} \ a_i \ a_{j+1} \dots a_n) = -\det(A) \quad (i, j = 1, 2, \dots, n \quad i \neq j)$$
.

これらは列に関する性質であるが,行に関しても同様に成り立つ.

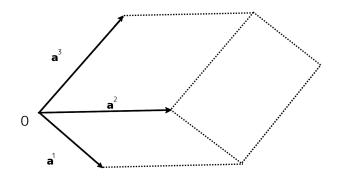


図 14: $oldsymbol{a}_1, oldsymbol{a}_2, oldsymbol{a}_3 \in \mathbb{R}^3$ によって定められた平行六面体 .

定理 4.2:A,B,C を適当な次元の行列だとすると

$$\det \left(\begin{array}{cc} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{O} & \boldsymbol{C} \end{array} \right) = \det \left(\boldsymbol{A} \right) \det \left(\boldsymbol{C} \right)$$

が常に成り立つ.さらに,

$$det(\mathbf{AB}) = det(\mathbf{A}) det(\mathbf{B})$$
 $det(\mathbf{A}^T) = det(\mathbf{A})$

も成り立つ.

よって,行列式を計算する場合,余因子を用いた展開でも可能であるが,行列の基本変形(ある行/列に定数をかけて異なる行/列に足す)を用いて上(下)三角行列に変形すると計算が容易にできる.

4.1 外積

定義 4.3: 実数ベクトル空間である \mathbb{R}^3 において,以下の(演算)関数 $\cdot \times \cdot : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ を外積と呼ぶ.つまり $a,b \in \mathbb{R}^3$ に対して,

$$oldsymbol{a} imesoldsymbol{b}:=\left|egin{array}{cc|c}a_2&a_3\b_2&a_3\end{array}
ight|oldsymbol{e}_1-\left|egin{array}{cc|c}a_1&a_3\b_1&b_3\end{array}
ight|oldsymbol{e}_2+\left|egin{array}{cc|c}a_1&a_2\b_1&b_2\end{array}
ight|oldsymbol{e}_3.$$

ただし, e_1,e_2,e_3 は \mathbb{R}^3 の標準基底とする.記号の意味を多少乱暴に使うと,以下のような記憶し易い形になる

$$m{a} imes m{b} := \left| egin{array}{ccc} m{e}_1 & m{e}_2 & m{e}_3 \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \end{array}
ight|.$$

定理 4.4: $a,b,c \in \mathbb{R}^3$, $\alpha \in \mathbb{R}$ に対して,以下の性質が成り立つ.

- 1. $\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$ で θ は \mathbf{a} と \mathbf{b} がなす角である.
- 2. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$
- 3. $(\alpha \mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (\alpha \mathbf{b}) = \alpha (\mathbf{a} \times \mathbf{b})$
- 4. $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$
- 5. $\boldsymbol{a} \times \boldsymbol{a} = \boldsymbol{0}$

例: 先程の 3 次元での例において $A=(a_1\ a_2\ a_3)\in\mathbb{R}^{3\times3}$ とすると,A の行列式の絶対値 $|\det(A)|$ は a_1 , a_2 , a_3 で作られる平行六面体の体積となっていたが,この体積は $|(a_1\times a_2)^Ta_3|$ として外積と内積を用いても計算できる.

5 線形方程式系の解法,逆行列と行列式の計算

線形方程式系を解くには Cramer の公式などがあるが,ここではより計算効率のよい Gauss-Jordan と Gauss の消去法を用いる.

5.1 Gauss-Jordan の消去法

例:

上記の行列の左側が単位行列になるように 基本演算 を施す.

- $(1) \times \frac{1}{2}$ として (3) とおく.
- $(2) (1) \times \frac{1}{2}$ として (4) とおく.

- $(4) \times \frac{2}{3}$ として (6) とおく.
- $(3) (4) \times \frac{1}{3}$ として (5) とおく.

$$x_1 = 1$$
 (5) $\begin{pmatrix} 1 & 0 & 1 & \frac{2}{3} & -\frac{1}{3} \\ x_2 & = 2 & (6) & \begin{pmatrix} 1 & 0 & 1 & \frac{2}{3} & -\frac{1}{3} \\ 0 & 1 & 2 & -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$

解は $(x_1,x_2)=(1,2)$ となる.

これらの計算で加減算は合計で7回,乗算は16回,除算は4回行ったことになる.

以上の計算により,
$$oldsymbol{A}=\left(egin{array}{cc} 2 & 1 \ 1 & 2 \end{array}
ight)$$
に対して定理 $oldsymbol{4}$. $oldsymbol{1}$ より,

$$\frac{1}{2} \times \frac{2}{3} \det(\boldsymbol{A}) = \det(\boldsymbol{I}) = 1$$