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contents of this chapter

e Percolation : one of the simplest processes
taking place on networks



Processes on networks

* To make the connection between network
structure and function

— Network failure and resilience
— Dynamic systems on networks
— Epidemic and spreading processes



$=1
percolation

Removing some vertices in a network
— failure of routers on the Internet

— vaccination / immunization against the¢ =0.7
spread of disease

“knock-on” effect

— vaccination of small fraction of the
population can effectively prevent the
spread of disease

— “herd immunity”

=0.3
Percolation theory : to understand hov?
the knock-on effects of vertex removal

affect the network as a whole



vertex / edge removal

site percolation : vertex removal <=
bond percolation : edge removal

random removal e—
removal from highest degrees
removal of highest betweenness



. =1
Uniform random removal 7

of vertices

e ¢: probability that a vertex is
present (occupation probability)

= 0.7
— ¢ = 1: no vertices have been ¢
removed [ connected
— ¢ = 0: all vertices have been
removed

e Percolation transition : formation /
dissolution of a giant component ¢ = 0.3]

e Percolation threshold : the point at
which the transition occurs

[disconnectﬁ .\.




configuration model

 Degree distribution of a naive random graph is
Poisson distribution

* Configuration model: a method for generating
networks of arbitrary degree distribution

— “stumps” are prepared according to given
‘I degree distribution and they are
; connected randomly & ; €
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Uniform removal in the configuration
model (1)

Site percolation process on networks generated using the
configuration model

Configuration model network with degree distribution : py
Occupation probability: ¢ [ removed (1 — ¢) or present but not]

Size of the giant cluster S connected to GC via its neighbors
— k: degree

— U : average probability that the vertex is not connected to the giant
cluster via a particular neighbor

— u®: probability of its not belonging to the giant cluster
— Y. pru(= go(u)) : average probability of not being in the giant .ﬁ
cluster

— 1 — go(u): average probability of being in the giant cluster

k
— S = ¢[1 — go(u)]: total fraction of the giant cluster (because ¢ is the
probability of remaining nodes

n
go(z): Z pkzk :generating function
k=0



Uniform removal of the configuration
model (2) All neighbors of vertex A ]

are not connected to GC
Total probability of not connecting to ant

component via vertex A is@uk
Excess degree distribution vertex A is removed

— Probability of an edge reaches to a vertex of degree k
(other than the edge we arrived along )

_ _ (k+1)pPk+1

Average probability that a vertex is not connected to
the giant component :

u=Yoqr(l— ¢ +pu*)=1—¢ + ¢ Xpqru”
=1—-¢ 1‘ $g.(u)

gl(z) = Z d, Z ‘ :generating function for the excess degree distribution
k=0




Excess degree distribution (p.445)

e Configuration model with degree distribution p; when
vertices are chosen randomly

e |f we take a vertex and follow one of its edges to the
vertex at the other end, what is the probability that
this vertex will have degree k?

— Itis not py(because a vertex of degree zero will not be
reached)

— Probability of selecting an edge ending at any particular
vertex of degree k: k/(2m —1) = k/2m

— There are np,, such vertices - probabilitx of an edge
. : : _ kpk
attaching to any vertex with degree k is o X Py = w0

— The probability is proportional not to p;, but to kp;,
high degree is more likely
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Your friends have more friends than

you do e )

* Average degree of a neighbor :),; k ky (k)

e Average degree : (k) = Zm

n

, (k%) _ _ _ Ok
o )= <k>((k2) (k)?) = 70> 0

Average Average (k?)
degree | neighbor deg ( k)

ree
Biologists 1520252 15.5 68.4 130.2
Mathematicians 253339 13.2
Internet 22963 4.2 2243 261.5
N TT—

[ a vertex of degree k appears as one of the neighbors of ]
exactly k other vertices -> overrepresented




Excess degree
=g

e The number of edges attached to a vertex
other than the edge we arrived along

* One less than the total degree

k 1 [ ] ] [ ]
* (i = Ut D)Pies1 . aycass degree distribution
(k)

denominator is still just <k> (Yx—qqx = 1)




Generating functions for degree
distributions (p.450)

90(2) = Lo Prz"
— o k F
91(2) = Lg=0 qxZz These are not independent ]

e

_ (k+1)pK+1
91(2) = .
1 dg
<k>Zk o(k + 1)Pk+1Z <k>2k 0 kPkZ — @d—zo

(k) = go(1)

90(2)
g6(1)

91(z) =



Graphical solution of function u

size of giant component

Z . .
S = ¢[1 — Yo (u)] Qg function for]
degree distribution
— '™ k

90(2) = Y=o PrZ

1 _ total probability of not
u 1 ¢ T ¢91 (uﬁ connecting to the giant}
g1 (u) — Zlo{ozo qkuk component via vertex A

~ (k+D)pr+1 generating function for
drx = (k) excess degree distribution

\[ excess degree distribution ]




O>¢, | A
Graphical solution of function i

Compressed and

nontrivial
solution

e Solvingu = 1= qb + qbgl(u) graphlcally

y=g,\u § ,_, =
) y :1—¢+ml(u) -- 1( ) /,f | ¢ E= ¢C L _‘_,_,_,-'-""----- :
y=u i 7 B

e Trivial solutionatu=1— T
NI T I—
9:(1) s om0 0| clyster M8 =

e When thereis nandtrrvwai smutm i
there can be a glant cqut



Critical occupation probability

[curve is tangent to the }>
dotted line at u= 1 By |

e Percolation threshold -

P = ¢ | _.,f«fj.’ff
~(1-¢+ cbgl(u))]u:l =
B ¢C - .91(1) :
- 91(D) = 5 T k(k + Dpres = o5 Do k(k — Dpic
_ (k?) = (k)
(k)

(k)

© P = e
present in the co

component to exist

: minimum fraction of vertices that must be
' ion model network for a giant

if (k%) > (k) , then ¢, is low and ]
the network will have a giant cluster




Giant cluster of Poisson/power-law
distribution

. (k)
¢C‘<k2>—<k>

k
. . . . —cC
* Poisson distribution :p, = e CE - ¢, =

1
C
— % of the vertices have to be removed before the
giant cluster is destroyed

e Power-law distribution : (k?) diverges for
large networks —» ¢, = 0

— No matter how many vertices are removed, there
will always be a giant cluster

robust against disease spread s\_)
random failure out of control V




Size of the giant cluster

As well as percolation threshold, the size of the giant cluster also
plays a role for assessing robustness of a network

We can solve for u for some special cases
A network with an exponential degree distribution

—pe=(1—-eM)e M Ar>0
- 90 =50 @) = (5
—u=1-¢+¢g:(v)
Su=1-pg (o)
—ulet—u) =1 -¢)(er—u) —p(er—1) =0

et—1

) (p.468)




Size of giant cluster (exponential
degree distribution)
o u(e? - u)z —(1-¢)(e? - u)z — ¢p(et - 1)2 =0

u = 1 is always a solution =it must contain a factorof u — 1
(u—D[u?+ (¢ —2et)u+ ¢ — 2¢pet+e2t] =0

This can became greater
u = el _%(p _ \/%(pz + ¢ (e — g than 1 for small ¢ ]
— the other solution is greater than one so it cannot be probability u

5 = [1 — go(w)] = ¢ [1 S—Cl ]
b+ [¢2+4¢(e/1—1)

Y

d— |p2+ap(et-1)

2p— 297 +pCer - D)




Size of giant cluster (exponentlal

degree di
When u =1, u = et ——qb— —q52+gb(e’1—1)—1

ﬂ—l—%cp = [fo? + (i -
_1 (eﬂ - 1) <[ percolation threshold ]

If/1 becomes large, ¢ can become greater than one
_ _(e ~1)=1-1=n3 When A > ln§ , the network]
2

When 1 = 1/2,(¢,.=0.324... has no giant component

— Phase transition
— Sharp transition is true in a
infinite networks

4 glant cluster ]
exists

0 0.2 0.4 0.6 0.8 1
Occupation probability ¢ ¢




Non uniform removal of vertices

e \ertices are removed randomly (previous
discussion)

 High-degree vertices are removed —
percolation will be quite different



