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network models

e “If | know a network as some particular

property, such as a particular degree
distribution, what effect will that have on the

wider behavior of the system?”
e building mathematical models of networks

— mimic the patterns of connections in real
networks
— understand the implications of the patterns



random graph

 a model network in which some specific set of
parameters take fixed values, but the network

is random in other respects

e simplest example: G(n, m)
— take n vertices and place m edges at random
— simple graph (no multiedges or self-edges)

—>a probability distribution P(G) over possible
netWOka P(G) _ {1/!2 if G is a simple graph with n vertices and m edges

) otherwise

Q:the total number of simple graphs
with n vertices and m edges



random graph model = an ensemble of
networks

e properties of random graphs = the average
properties of the ensemble

e diameter of G(n,m) : <I>=ZP(G)I(G):éZI(G)
e this is a useful definition for several reasons:

— many average properties can be calculated exactly

— we are often interested in typical properties of the
networks
— distributions of values for many network measures is

sharply peaked
* average degree : (k)=2m/n



another random graph model

* G(n,p)
— n : the number of vertices
— p : the probability of edges between vertices

e G(n,p) is the ensemble of networks with n
vertices in which each siEane G appears with

probability pg) _ pr ) st ]
e often called as “Erdos-Renyi model”, “Poisson

random graph”, “Bernoulli random graph”, or
“the random graph”




mean number of edges and mean
degree of G(n,p)

e total probability of drawing a graph with m
edges from the ensemble is

n (nj_m the expected value of
P(m) =1{2 pm (1_ p) 2 Lt(,m/ialy distributed ]
variable (see the next page)
i :
2
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e the mean value of m is <m>=ZmP<m)=(ij

n m=0

2

e the mean degree is .\ _ JZ_m _2(ny
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the expected value of binomially
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degree distribution of G(n,p) (1)

e avertex is connected with probability p to
each of the n-1 other vertices

nl 1 n—1-k
P = (kjp( p)

e we are interested in large networks

— a mean degree is approximately constant
— p=c/(n-1) becomes vanishingly small as n—«

n-1-k | _ =1 — _L ~ _ =1 — Lz_
In|@— p)™*]=(n-1 k)In(l =1k =

n-1— k —c © _1 n+l )
d-p) In(L+x) = Z( X" foralllx| <1
for large n 11 n2 1 . Taylor expansion
= x——x +=X—

\ 2 3 J




degree distribution of G(n,p) (2)

e forlarge n

(n-1)(n-2)...(n-k)/k!

(n—l] o-n Yoo
K

(n—1-k)k!~ k!

* p, becomes as follows in the limit of large n
1) o e (=D kc_(n—l)k( c j o e
pk(k]p( 2 @ P T et TR K

Poisson distribution




clustering coefficient of G(n,p)

clustering coefficient : the probability that two
network neighbors of a vertex are also ug - gw
neighbors of each other 5./

in @ random graph, the probability is p=c/(n-1)

c_ C
n-1

tends to zero in the limitn—>

differs sharply from most of the real-world
networks (quite high clustering coefficient)



Giant component (1)

e the size of the largest component in a network
— p=0 - size=1 4 independent of the ] ' 'p ...................... | T.::""‘ﬁ?
— p=1 - size=n T erow it The ]
e giant component—"4
— a component whose size grows in pro
* u:average fraction of vertices that do not belong
to the giant component
— u =1 if there is no giant component

— u is the probability that a randomly chosen vertex
does not belong to the giant component

size




Giant component (2)

e if vertex i does not belong to the giantferobability of not
. being connected to
component, for every other vertexj |g.c. viaj: 1-p+pu
— i is not connected to j by an edge< probability: 1-p]
— | is connected to j, but j is not a member of the
giant component < probability: pu |

* total probability of not being connected to g.c.

via any of n-1 vertices:

—_—

u=(1-p+pu)t= [1—C(1—u)}u
n-1



Giant component (3)

taking logs of both sides

Inu = (u—1) In[l—c(l—u)} ~ _(N—1)——(1—u) = —c(1-u)
n-—1 n-—1

taking exponentials of both sides

U= e—c(l—u)

u is the fraction of vertices not in the giant

component

the fraction of vertices that are in the giant

componentis S=1-u

_ it doesn’t have a
S=1—e‘$‘ﬁ mole solution S|



Giant component (4)

e graphical solution for the size of the giant
component
| ; y:!S

1_ e—CS

transition between l

d —CcSy __
@e )_1]

i | ce® =1
) no giant' component | S=0—->c=1
U 0 9 {}'__1 T ”:h' T 0.8 o | if c<=1, no giant component

’ if c>1, two solutions for S (S=0 & S>0)



the value of c and the growth of a set
(1)

e core: all neighbor are inside the set
e peripheral : at least one neighbor is outside

* enlarging the set by adding immediate
neighbor

— s vertices in the set, n-s vertices outside the set

— the average number of connections a vertex 'H the
periphery has to out5|de vertlcesls P(n §)=c > =g

n-1
o '\r .
~core L '
perlpheral k/% <
oy
— . :

- } c neighbors

. onaverage
P I S




the value of c and the growth of a set

e each peripheral has ¢ neighbors outside
— (# of new peripheral) = ¢ X (# of old peripheral)
e if c>1, the average size of the periphery will
grow exponentially - giant component

e the size of the glant component is the Iarger
solution of s=1-¢ B -




small components (1)

e whenc> 1, there exist a giant component

e whatis the structure of the remainder of the network?

— it is made up of many small components whose average
size is constant and doesn’t increase with the size of the
network

e there is only one giant component
— suppose there are two giant components which have size
S;nand S,n
 the number of distinct pairs of vertices between the two is S;S,n?
e the probability that there is no edge between the two component

is , c 5,5,n°
q=(1-p)>" = (1—j
n-1



small components (2)

e taking logs of both sides and going to the limit

N — oo

Ing=S5,S, lim nzln(l—cj =8182[—c(n+1)+1c2
N—o0 n-1 2
S g 1 1 Taylor expansion
=C —N+| =C— 2 (=)™
i 2 In(1+x):z( Do forall[x| <1
. . . =
e taking the exponential again 1, 1.,
—cSS,n X=X X

g =0o€ g, = el/2DsS: ; 2 3 J
constant
* the probability that t giant components

are really components dwindles exponentially
with increasing n




sizes of small components (1)

* r.:probability that a randomly chosen vertex
belongs to a small component of size s

Zﬂ's =1-3S .
s=0 .
e small components are trees A

— a tree of s vertices contains s-1 edges

— the total number of places where we could add an
extra edge to the tree: ; —(s—1)=%(s—1)(s—2)

— the total number of extra edges .
—(S D(s- 2)|O——(S D(s- 2)—
— S mcreases more slowly than fl:>extra edges— 0O



sizes of small components (2)

 because the component is a tree,
— (size of the component) = >(size of n,) +1

e if vertexiis removed, the subcomponents
become components in their own right

— probability that vertex n, belongs to a component

of SIZ§ S, IS Tty : J .
—a | s 2
ke -.’_ i » Hs
' : H.-__'_ - e
ns /[ '. e M,y 1 9
r——’r"ﬂ ® F—‘_Tﬁﬂ\ o
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size of small components (3)

e suppose that vertex i has degree k

e probability P(s|k) that vertex i belongs to
small component of size s is

P(s|k) = i---i{ﬂ”sj }5(5_1’2131)

=1 s =1 j=1

e to get m,, just average P(s|k) over the
distribution p, of the degree

zpkpmk) Sh.S. z{nn }as 1Y s,

j=1 k

. C

<3S Y[Hn }5@ 1Y) T

| . ..
kok =1 s, =1] j=1 in the limit of large k




size of small components (4)

e generating function encapsulates all of the
information about the degree distribution in a
single function

Nz)=mz+7m,2° +m2° +...= ) 7,2°
s=1

 we can recover the probabilities by

differentiating , _1dh
sl dz°

* substituting m, into the equation of h(z)
h(z) = Zze 7 7 Y|:H7Z' }5(5 lzs)

' —1 Sk =1 J =1




size of small components (5)

6=1 only when ]

0 K oo o0 Kk _
— ECXCXY{H ﬂ'sj :|21+sz1 s-1=3s,

k=0 ™=, j=1
. 0 Ck 0 0 k S .
= /e ZIZZ|:H7Z'SJZ i| . eXpX:ZEXn
k=0 k-slzl S, =1 szl k — n!
— zeczc{z 7,528} — ze‘czc—[h(z)]k = zexplc(h(z) -1)]
k=0 k! s=1 k=0 k!

it doesn’t have a known closed-form solution for
h(z), but we can calculate many useful things
from it without solving for h(z) explicitly



size of small components (6)

* mean size of the component to which a

randomly chosen vertex belongs
S 1
<S> = ZS s _d) h'(z) : the first

7T, 1-S derivative of h(z)
S

 from the equation of h(z)
h'(z) = exp|c(h(z) -1) ]+ czh' (z) exp|c(h(z) 1) ]

o h(2) - o
n(2)= z[l—ch(z)]%h(l) =2, % =1-8
hl) —T1.S

h'(]_) — =
1-ch(l) 1-c+cS
1 it doesn’t grow with the
<S> — number of vertices n
1—c+ ¢S when c<1 and there is no giant component,
<s>=1/(1-c)

@mh(z)h'(z)

) S—




divergence of the average size <s>

1

* upper curve : <S><> 1 crcs diverges when c=1

* lower curve: R

Mean degree ¢



average size of a small component

e <s>:the average size of the component to
which a randomly chosen vertex belongs

# average size of a component
* n,:the actual number of components of size s

* sn.: the number of vertices that belong to
components of size s

e the probability that a randomly chosen vertex

belongs to a component of size s is . = st




average size of a small component

e R:average size of a component
Zssns_ ny 7, 1-S
ans nZﬂ'/S Zﬂ'/S
_flh(z) —~4z = Z;z j 2°dz :25

51 O

h(z2) =i;zsz5]

00735_1_ @_1—5_ ___E_Z
z?_jo[l ch(2)]- olz_jO (1-chdh=1-8 - ~c(1-$)

2 it does not ]

"R = diverge at c=1
[h(l) 2.7 =1-8 2—C+CS




the complete distribution of
component sizes

e p.416



path lengths (1)

small world effect : typical length of paths
between vertices in network tend to be short

the diameter of a random graph varies with the
number n of vertices as Inn

— the average number of vertices s steps away from a
randomly chosen vertex in a random graph is c®

— it grows exponentially with s ¢s ~n
— diameter of the network is approximately s=Inn/Inc

this argument is true when c® is much less than n



path lengths (2)

e two different starting vertices (i and j)

e if there is a dashed line between the surfaces,
the shortest path between i and jis s+t+1

e the absence of an edge between the surfaces

IS @ hecessary and sufﬂuent CO\QQI'(IOH for, >\s+t+1
\ « }'
* c*xc' pairs of vertices

P(d; >s+t+1)=(1- p)*
I_s+t+1 ¢
P(d; >1)=(@1- p)C_ :(1—nj

I »
_ Al Cl1._¢C T
InP(d; >1)=c |n(1—nj =" il" |n(1+x)zz;(_1) X" forall\x\<l]

1-1




path length (3)

I
C tend to zero only | 1te
P(dij > |) = exp(_ j <[ if ! grows fasterﬁ ¢ =an ]
n e—->0
thann

e diameter : the smallest value of | s.t. P(d; >1)=0

Ina . (1+¢&)Inn Inn diameter
| = | + Ll_rjg | = A+ | increases slowly
nc nc nc e

e |ogarithmic dependence of the diameter on n

— acquaintance network of the entire world (7
billion people)

Inn |n(7 % ]_09) small enough to account for
| = = =3.3.. the results of the small-world
Inc In1000 experiments of Milgram




problems with the random graph (1)

e no transitivity or clustering

—C =ﬁ tens to zero in the limit of large n
— the acquaintance network of the human

population in the world
* nz=7,000,000,000

clustering coeftricient ofr
C =~ 1000 ~ 10‘7 real acquaintance
7,000,000,000 network is much bigger

(0.01 or0.5)

* no correlation between the degrees of
adjacent vertices (no communities)



problems with the random graph (2)

e the shape of degree distribution is different
— real network : right-skewed

Fraction of vertices with degree &

{
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B [nternet
] Poisson distribution
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