Complex Networks the large-scale structure of networks 2015.11.16(Mon) ### contents of this chapter - component sizes - path lengths and small-world effect - degree distributions and power law - clustering coefficient ### components large component: usually more than half and not infrequently over 90% ## metrics in real networks S: the size of the largest component as a fraction of total network size | | network | type | n | m | z | l | α | $C^{(1)}$ | $C^{(2)}$ | r | Ref(s). | S | |---------------|-----------------------|------------|-------------|---------------|--------|-------|----------|-----------|-----------|--------|----------|---------| | social | film actors | undirected | 449 913 | 25516482 | 113.43 | 3.48 | 2.3 | 0.20 | 0.78 | 0.208 | 20, 416 | 0.980 | | | company directors | undirected | 7673 | 55 392 | 14.44 | 4.60 | : | 0.59 | 0.88 | 0.276 | 105, 323 | 0.876 | | | math coauthorship | undirected | 253 339 | 496 489 | 3.92 | 7.57 | - | 0.15 | 0.34 | 0.120 | 107, 182 | 0.822 | | | physics coauthorship | undirected | 52 909 | 245300 | 9.27 | 6.19 | - | 0.45 | 0.56 | 0.363 | 311, 313 | 0.838 | | | biology coauthorship | undirected | 1520251 | 11 803 064 | 15.53 | 4.92 | == | 0.088 | 0.60 | 0.127 | 311, 313 | 0.918 | | | telephone call graph | undirected | 47 000 000 | 80 000 000 | 3.16 | 1 1 | 2.1 | | | | 8, 9 | - | | | email messages | directed | 59912 | 86 300 | 1.44 | 4.95 | 1.5/2.0 | | 0.16 | | 136 | 0.952 | | | email address books | directed | 16881 | 57 029 | 3.38 | 5.22 | | 0.17 | 0.13 | 0.092 | 321 | 0.590 | | | student relationships | undirected | 573 | 477 | 1.66 | 16.01 | | 0.005 | 0.001 | -0.029 | 45 | 0.503 | | | sexual contacts | undirected | 2810 | | | | 3.2 | | | | 265, 266 | | | information | WWW nd.edu | directed | 269 504 | 1 497 135 | 5.55 | 11.27 | 2.1/2.4 | 0.11 | 0.29 | -0.067 | 14, 34 | 1.000 | | | WWW Altavista | directed | 203 549 046 | 2 130 000 000 | 10.46 | 16.18 | 2.1/2.7 | | | | 74 | 0.914 | | | citation network | directed | 783 339 | 6716198 | 8.57 | | 3.0/- | | | | 351 | _ | | | Roget's Thesaurus | directed | 1022 | 5 103 | 4.99 | 4.87 | = | 0.13 | 0.15 | 0.157 | 244 | 0.977 | | | word co-occurrence | undirected | 460 902 | 17 000 000 | 70.13 | | 2.7 | | 0.44 | | 119, 157 | _ 1.000 | | technological | Internet | undirected | 10 697 | 31 992 | 5.98 | 3.31 | 2.5 | 0.035 | 0.39 | -0.189 | 86, 148 | 1.000 | | | power grid | undirected | 4 941 | 6 594 | 2.67 | 18.99 | | 0.10 | 0.080 | -0.003 | 416 | 1.000 | | | train routes | undirected | 587 | 19603 | 66.79 | 2.16 | 1 | | 0.69 | -0.033 | 366 | 1.000 | | oloc | software packages | directed | 1 439 | 1723 | 1.20 | 2.42 | 1.6/1.4 | 0.070 | 0.082 | -0.016 | 318 | 0.998 | | techī | software classes | directed | 1 377 | 2 213 | 1.61 | 1.51 | | 0.033 | 0.012 | -0.119 | 395 | 1.000 | | | electronic circuits | undirected | 24 097 | 53 248 | 4.34 | 11.05 | 3.0 | 0.010 | 0.030 | -0.154 | 155 | 1.000 | | | peer-to-peer network | undirected | 880 | 1 296 | 1.47 | 4.28 | 2.1 | 0.012 | 0.011 | -0.366 | 6, 354 | _ 0.805 | | biological | metabolic network | undirected | 765 | 3 686 | 9.64 | 2.56 | 2.2 | 0.090 | 0.67 | -0.240 | 214 | 0.996 | | | protein interactions | undirected | 2115 | 2 240 | 2.12 | 6.80 | 2.4 | 0.072 | 0.071 | -0.156 | 212 | 0.689 | | | marine food web | directed | 135 | 598 | 4.43 | 2.05 | | 0.16 | 0.23 | -0.263 | 204 | 1.000 | | | freshwater food web | directed | 92 | 997 | 10.84 | 1.90 | | 0.20 | 0.087 | -0.326 | 272 | 1.000 | | | neural network | directed | 307 | 2359 | 7.68 | 3.97 | = | 0.18 | 0.28 | -0.226 | 416, 421 | 0.967 | TABLE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices n; total number of edges m; mean degree z; mean vertex-vertex distance ℓ ; exponent α of degree distribution if the distribution follows a power law (or "-" if not; in/out-degree exponents are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient $C^{(2)}$ from Eq. (6); and degree correlation coefficient r, Sec. III.F. The last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data. M. Newman "The structure and function of complex networks" http://arxiv.org/abs/cond-mat/0303516 # two large component no large component • two large components -> $(n/2)^2$ pairs -> no connection is highly unlikely - no large component - -> people don't usually represent such situations by networks at all. ### components in directed networks • SCC, in-component, and out-component "The web is a bow tie" http://www.nature.com/nature/journal/v405/n6783/full/405113a0.html ### small-world effect - Stanley Milgram's letter-passing experiment - people were asked to send a letter to a distant target person by passing it from acquaintance to acquaintance - # of hops between two arbitrary persons is around six on average • remarkably small (although the network have millions of vertices) path length scale as log n with the number n of network vertices ## On Facebook, it's now 4.74 degrees of separation http://edition.cnn.com/2011/11/22/tech/soci al-media/facebook-six-degrees/index.html (CNN) -- In the Facebook age -- when digital "friends" are just a click away -- the distance between people seems to be shrinking, according to data the social network released on Monday night. The adage maintains there are "six degrees of separation" between any two people on Earth, meaning that any two people would know each other through no more than six intermediary contacts. On Facebook, however, the average user is only 4.74 degrees away from any other Facebooker. ### degree distributions p_k: fraction of the vertices that have degree k $$p_0 = \frac{1}{10}, p_1 = \frac{2}{10}, p_2 = \frac{4}{10}, p_3 = \frac{2}{10}, p_4 = \frac{1}{10}$$ • degree sequence: $\{k_1, k_2, ..., k_n\}$ $\{0,1,1,2,2,2,2,3,3,4\}$ there is more than one network with the same degree distribution ### the degree distribution of the Internet - x axis: degree (k) - y axis: fraction (p_k) of vertices with degree k - most of the vertices have low degree - significant "tail" -- hubs - the degree distribution is right-skewed #### power laws and scale-free networks - both axes are logarithmic $\ln p_k = -\alpha \ln k + c$ $p_k = Ck^{-\alpha}$ - distributions of this form are called as "power laws" - values in the range $2 \le \alpha \le 3$ are typical - in many cases, the power law is obeyed only in the tail of the distribution - "scale-free networks" ### detecting and visualizing power laws - a simple histogram presents some problems - poor statistics in the tail of the distribution - noisy signal will make it difficult to detect power laws - solutions - use a histogram with larger bins - using bins of different sizes - wide bins in the tail - narrow ones at the left-hand end are desirable ## logarithmic binning - each bin is made wider than its predecessor by a constant factor a (a=2 is common) - 1st bin: 1 ≤k<2 - nth bin: aⁿ⁻¹ ≤k<aⁿ - width: $a^{n-1} = (a-1)a^{n-1}$ - the histogram is much less noisy - the bins have equal width on a log-scale histogram #### cumulative distribution function P_k: fraction of vertices that have degree k or greater $$P_k = \sum_{k'=k}^{\infty} p_{k'}$$ • p_k follows a power law $$- p_k = Ck^{-\alpha} \text{ for } k \ge k_{\min}$$ • for $k \ge k_{\min}$ $$P_k = C \sum_{k'=k}^{\infty} k'^{-\alpha} \cong C \int_k^{\infty} k'^{-\alpha} dk' = \frac{C}{\alpha - 1} k^{-(\alpha - 1)}$$ • if the distribution p_k follows a power law, so does the cumulative distribution function P_k 0.0001 ## advantages of cumulative distribution functions - P_k does not require binning - easy to calculate: sort the degrees of vertices in descending order and number them from 1 to n in that order degree : (highest) k_i (lowest) rank: 1 2 3 r_i ... n y axis P_k : 1/n 2/n 3/n r_i/n n/n ## example | x axis | y axis | | | | | | |----------|--------|-------------|--|--|--|--| | degree k | rank r | $P_k = r/n$ | | | | | | 4 | 1 | 0.1 | | | | | | 3 | 2 | 0.2 | | | | | | 3 | 3 | 0.3 | | | | | | 2 | 4 | 0.4 | | | | | | 2 | 5 | 0.5 | | | | | | 2 | 6 | 0.6 | | | | | | 2 | 7 | 0.7 | | | | | | 1 | 8 | 0.8 | | | | | | 1 | 9 | 0.9 | | | | | | 0 | 10 | 1.0 | | | | | ### disadvantages of cumulative distribution functions - less easy to interpret - successive points on a plot are correlated not valid to extract the exponent of a power law distribution by fitting the slope on the straight-line portion of a plot and equating the result with α -1 fitting (such as least squares) assume independence between the data points ### calculating α directly from the data - not good to evaluate exponent (α) from cumulative distribution functions or ordinary histograms - calculating α directly $$\alpha = 1 + N \left[\sum_{i} \ln \frac{k_i}{k_{\min} - \frac{1}{2}} \right]^{-1}$$ k_{min}: the minimum degree for which the power law holds N: # of vertices with degree $\geq k_{min}$ • statistical error on α $$\sigma = \sqrt{N} \left[\sum_{i} \ln \frac{k_{i}}{k_{\min} - \frac{1}{2}} \right]^{-1} = \frac{\alpha - 1}{\sqrt{N}}$$ example: Internet (Fig. 8.3) $$\alpha = 2.11 \pm 0.01$$ #### properties of power-law distributions - power-laws appear in a wide varieties of places - the size of city populations, earthquakes, moon creators, solar flares, computer files, wars - the frequency of use of words in human languages - the frequency of occurrence of personal names - the number of papers scientists write - the number of hits on Web pages - the sales of books, music recordings, and almost every other branded commodity #### normalization pure power-law distribution(k starts from 1) $$\sum_{k=0}^{\infty} p_k = 1 \qquad p_k = Ck^{-\alpha}$$ $$C\sum_{k} k^{-\alpha} = 1 \qquad C = \frac{1}{\sum_{k=1}^{\infty} k^{-\alpha}} = \frac{1}{\zeta(\alpha)}$$ Riemann zeta function $$p_k = \frac{k^{-\alpha}}{\zeta(\alpha)} \quad \text{k>0, p}_0 = 0$$ • deviation from power-law for small k $$k^{-\alpha} \qquad k^{-\alpha}$$ $$p_{k} = \frac{k^{-\alpha}}{\sum_{k=k_{\min}}^{\infty} k^{-\alpha}} = \frac{k^{-\alpha}}{\zeta(\alpha, k_{\min})}$$ generalized zeta function or the tail is approximated by an integral $$C \cong \frac{1}{\int_{k_{\min}}^{\infty} k^{-\alpha} dk} = (\alpha - 1)k_{\min}^{\alpha - 1} \qquad p_k \cong \frac{\alpha - 1}{k_{\min}} \left(\frac{k}{k_{\min}}\right)^{-\alpha}$$ ### moments (1) moments of degree distribution $$\langle k \rangle = \sum_{k=0}^{\infty} k p_k \qquad \langle k^2 \rangle = \sum_{k=0}^{\infty} k^2 p_k \qquad \langle k^m \rangle = \sum_{k=0}^{\infty} k^m p_k$$ • if p_k has a power-law tail for $k \ge k_{\min}$: $$\left\langle k^{m} \right\rangle = \sum_{k=0}^{k_{\min}-1} k^{m} p_{k} + C \sum_{k=k_{\min}}^{\infty} k^{m-\alpha}$$ because $p_{k} = Ck^{-\alpha}$ because $p_{k} = Ck^{-\alpha}$ approximate by an integral $$\left\langle k^{m} \right\rangle \cong \sum_{k=0}^{k_{\min}-1} k^{m} p_{k} + C \int_{k_{\min}}^{\infty} k^{m-\alpha} dk$$ $$= \sum_{k=0}^{k_{\min}-1} k^{m} p_{k} + \frac{C}{m-\alpha+1} \left[k^{m-\alpha+1} \right]_{k_{\min}}^{\infty}$$ depends on m and α well-defined if and only if $\alpha > m+1$ ### moments (2) - second moment $\langle k^2 \rangle$ arises in many calculations - mean degree of neighbors - robustness calculations - epidemiological processes if we were to calculate for an arbitrarily large network with the same power-law degree distribution, - for large network, it is finite if and only if $\alpha > 3$ - but 2 ≤ α ≤ 3 for most real-world networks - for any finite networks, it is finite $$\langle k^m \rangle = \frac{1}{n} \sum_{i=1}^n k_i^m$$ ### top-heavy distribution the fraction W of end of edges attached to a fraction P of the highest-degree vertices in a network $$W = P^{(\alpha-2)/(\alpha-1)}$$ - Lorenz curves - example: WWW $$\alpha = 2.2$$ 89% of all hyperlinks link to pages in the top half of the degree distribution 50% of links go to 1.5% richest vertices ## clustering coefficient (C) - average probability that two neighbors or a vertex are themselves neighbors - density of triangles in a network $\left[\langle k^2 \rangle \langle k \rangle \right]^2$ - random network: C is small $C = \frac{1}{n} \frac{\ln (n + \sqrt{n})}{\langle k \rangle^3}$ - social network : C is large (10% 60%) - because of "triadic closure" - Internet: observed C is smaller than expected - C =0.012, but expected value=0.84 ## local clustering coefficient - $C_i = \frac{\text{(# of pairs of neighbors of i that are connected)}}{\text{(# of paths of neighbors of i)}}$ - C_i decrease with k $C_i \approx k^{-0.75}$ - because of community structure vertices of higher degree tend to have lower local clustering coefficient vertices in a small community are constrained to have low degree, and their C_i will tend to be larger ### assortative mix, homophily - high-degree vertices tend to connect highdegree ones - degree ones $r = \frac{\sum_{ij} (A_{ij} k_i k_j / 2m) k_i k_j}{\sum_{ij} (k_i \delta_{ij} k_i k_j / 2m) k_i k_j}$ - faster computation of r $$r = \frac{S_1 S_e - S_2^2}{S_1 S_3 - S_2^2}$$ $$S_e = \sum_{ij} A_{ij} k_i k_j = 2 \sum_{edges(i,j)} k_i k_j$$ $$S_1 = \sum_{i} k_i, S_2 = \sum_{i} k_i^2, S_3 = \sum_{i} k_i^3$$ • social networks: positive r - other networks: negative r ## degree distribution with R+igraph GML file is available at Mark Newman's Website (http://www-personal.umich.edu/~mejn/netdata/). ``` > ig<-read.graph("as-22july06.gml",format="gml") > summary(ig) summary of the network Vertices: 22963 Edges: 48436 Directed: FALSE No graph attributes. Vertex attributes: id, label. No edge attributes. > vcount(ig) the number of vertices [1] 22963 > ecount(ig) the number of edges [1] 48436 > no.clusters(ig) the number of clusters [1] 1 average path length > average.path.length(ig) [1] 3.842426 clustering coefficient > transitivity(g) [1] 0 > mean(degree(ig)) average degree [1] 4.218613 ``` ``` > max(degree(ig)) the maximum degree [1] 2390 > min(degree(ig)) the minimum degree [1] 1 > tkplot(ig) * too large to visualize > power.law.fit(degree(ig)) fits a power-law distribution Call: mle(minuslogl = mlogl, start = list(alpha = start)) Coefficients: alpha 1.874345 > hist(degree(ig)) > plot(degree.distribution(ig),log="xy") histogram power-law distribution R Graphics: Device 2 (ACTIVE) Histogram of degree(ig) degree.distribution(ig) 15000 ``` 1000 1500 2000 degree(ig) 50 Index