Complex Networks
measures and metrics



centrality

e which vertex is the most central?
— red?
— blue?
— green?
— light blue?
— yellow?



many definitions of centrality
(4
| | ‘,/
e which vertex is the most centrat
— degree centrality
— eigenvector centrality

— closeness centrality =

— betweenness centrality ———




degree centrality

e # of edges connected to a vertex

— friendship
— citation -

> B
* directed networks
— in-degree centrality <

— out-degree centrality



eigenvector centrality (1)

neighboring vertices are not equally important
setting initial values (x, = 1 for all i)
update by the sum of the centralities of the
neighbors -3 A,

X = AX J J |
repeating this process

x(t) = A'x(0)

write x(0) as a linear combination of eigenvectors

x(0) = Z C,Vi C, :some appropriate choice of constant
i



eigenvector centrality (2)

x(t) :Atzi:civi :ZCiKitVi :K{Zci {%jtvi - Aly = kly
K, : eigenvalue of A, K, :the largest one

K 1x <1 for all izl

when t—>o x(t) > cx v,

the centrality x satisfies Ax=xx x =« ZAJ |
— proposed by Bonacich in 1987

eigenvector centralities are non-negative



eigenvector centrality for directed
networks

* [problem1]adjacency matrix is asymmetric -> two

sets Of eigenVECtorS Centrality is determined
. . . by other vertices
— left eigenvectors and right eigenvectors| pointing towards you

. XA = X . . Ax=A
°* INn mo§At cases, rlght elgenvecf‘ors are used

X; :Kl_leinj Ax = KX
]
* [problem2] no incoming edges B
-> centrality will be zero %:'5

— only SCCs and their out-components can,
have non-zero centralities




Katz centrality

simply give each vertex a small amount of

centrality
X. :az AjX; + x=aAx+ (1 1=(111..)
j

X = ,B(I — O(A?_l -1 B =1 (absolute value of x is not important)
x=I-aA) -1
a:balance between the eigenvector term and
constant term

if a—>0, all vertices have the same centrality B

as we increase a, x diverges when (I-aA)™
diverges det(A-a'T)=0

-1
= K, the largest eigenvector of A

a should be less than 1/k, if we wish the centrality converge



calculating Katz centrality

* inverting matrix : (O(n3)) slow
X:(I—QA)_l'l # of vertices

* update x repeatedly:
x'= aAx + f1 # of iteration || # of edges




PageRank (1)
X =ay AX;+f
« weakness of Katz céntrality: if a vertex with
high Katz centrality points to many others,
then those others also get high centrality

— centrality should be diluted
e PageRank

— the centrality derived from neighbors is divided by
their out-degree

X.
X :“ZAU kofn +/
j j

for the vertices with zero outdegree (k°“'=0), we artificially set k°u=1



PageRank (2)

X

X ZOKZA” kofjt +ﬂ
] j

x = cAD x + IB] D: diagonal matrix with elements D,=max(k.°"t,1)

x = A(1 _aAD‘l)‘l .1 PBissetto1l
x=DD-cA) " 1
 Google uses it as a central part of their Web
ranking technology

 a should be less than the inverse of the largest
eigenvalue of AD™!

e a=0.85 is often used



summary of centrality measures

_ with constant term without constant term

divide by out-degree X = D(D — aA)‘l . x = AD *x
PageRank degree centrality

no division x=(I- O(A)_1 -1 X = Kl_lAX
Katz centrality eigenvector centrality




hubs and authorities (1)

e two types of important vertices

— authorities: vertices that contain useful
information

— hubs: vertices that tell us where the best
authorities are to be found

e HITS (hyperlink-induced topic search) : search
authority centrality (x;) and hub centrality (y;)

good authority is pointed

X. good hub points to
' by many good hubs Yi

X; L
I many good authorities




hubs and authorities (2)

e authority centrality (x;) and hub centrality (y,) are
mutually recursive

X, :aZAjyj Y, =ﬁZAjin
x:aA;r Y=,3A%X
AA'x = Ix AT Ay = ly A=(af)”
e authority and hub centralities are given by

eigenvectors of AAT and A'A with the same
eigenvalue (leading eigenvalue should be used)

 AA" and A'A have the same eigenvalues

AA'X = Ax AT x is an eigenvector of ATA with the same eigenvalue A

ATA(ATX)=1(ATx) Y=A'x



hubs and authorities (3)

e AA'"is cocitation matrix
e ATA is bibliographic coupling matrix

 hub and authority centralities circumvent the

problems of eigenvector centrality with directed
network

— problem: vertices outside of SCC or out-components
always have centrality zero

— vertices not cited by any others have authority

centrality zero, but they can still have no-zero hub
centrality

HITS is used as the basis for the Web search engines Teoma and Ask.com



closeness centrality

meaq distance from a vertex to other vertices
. :ﬁzdij d;; : length of geodesic path fromi to j
J

low values for vertices that are close to others

closeness centrality : inverse of |.
1 n

i

. d.
j ]

problems of closeness centrality

— span a rather small range from largest to smallest

— vertices in smaller component will get higher value



problems of closeness centrality

e span a rather small range from largest to
smallest

— difficult to distinguish between central and less
central ones (small fluctuations can change the
order)

— Internet Movie Database: half a million actors
e smallest centrality 2.4138, largest centrality 8.6681

e vertices in smaller component will get hlgher
value

1 1
— redefine closeness:C, =—— » —
n— J(¢|)dlj




mean geodesic distance

e for a network with only one component

1 1 :
I :deij :ﬁzli mean of | over all vertices
ij i

e for azr:\eiwork with more than one component
d.
. m ijec, U

2
mnm

| n., : # of vertices in component @

average only over the paths in the same component

e alternative approach : harmonic mean
distance




betweenness centrality (1)

# of geodesic paths a vertex IieW\
. |1 iisonthe path fromstot )
|0 otherwise A
betweenness centrality x W
X; = Y N counts each vertex pair twice Ci€important f

st passing messages

plural paths -> give weight (=1/(# of paths))

X. = Zg— g : # of geodesic paths fromstot
S st

good also for directed networks

B



betweenness centrality (2)

e avertex on a bridge acquires hig
betweenness

— although its eigenvector/closeness/degree
centrality is low

e its values are distributed over a wide range

— maximum : star graph (n?-n+1)
— minimum : leaf (2n-1)

. 2
—ratio: N -n+l 1
2n-1 2

large dynamic range -> clear winners/losers




variation of betweenness centrality

L 1 «n
* normalization: x = > > gS‘
st st

 flow betweenness: n}, -> # of independent
paths between s and t that run through i

e random-walk betweenness:

X. =Zn;t n. : # of times that the random walk
st

from s to t passes through i
—in general, n. =n}

— random-walk betweenness and shortest-path
betweenness often give quite similar results



centrality with R+igraph

library(igraph)
g0 <- graph(c(0,2,1,2,2,3,2,4,3,5,3,6,4,6,5,7,6,7,7,8,8,9,8,10), directed=FALSE) 5
tkplot(g0) degree centrality: 2 is the biggest |
degree(g0)
[1]11432233311 : : :
betweenness(g0) [ betweenness centrahty%}
[1] 0.00000 0.00000 17.83333 13.66667 5.50000 6.00000 15.16667 21.83333

[9] 17.00000 0.00000 0.00000

closeness(g0) | closeness centrality: 6 is the b‘igg]
[1] 0.2941176 0.2941176 0.4000000 0.4545455 0.4166667 0.4347826 0.4761905
[8] 0.4545455 0.3703704 0.2777778 0.2777778

evcent(g0)Svector |__eigenvector centrality: 3 is the biggest |

[1] 0.3609833 0.3609833 0.9416624 1.0000000 0.7344577 0.6926947 0.9742468
[8] 0.8069662 0.4381138 0,1679495 0.1679495

page.rank(g0)svector L_PageRank: 2 is the biggest |

[1] 0.04789965 0.04789965 0.16123899 0.11361066 0.07996125 0.07917508
[7]0.11315861 0.11770244 0.13537082 0.05199143 0.05199143

> authority.score(g0)$vector [_authority: 6 is the biggest |
[1] 0.2950560 0.2950560 0.9665543 0.8173675 0.6003218 0.7110054 1.0000000
[8] 0.6595879 0.4496949 0.1372765 0.1372765

> hub.score(g0)Svector | hub: 6 is the bigge&]
[1] 0.2950560 0.2950560 0.9665543 0.8173675 0.6003218 0.7110054 1.0000000
[8] 0.6595879 0.4496949 0.1372765 0.1372765




groups of vertices

cligue : maximal subset of vertices such that every
vertex is connected to every other

k-plex : maximal subset of n vertices such that each
vertex is connected to at least n-k of the others

— 1-plexis clique

k-core : maximal subset of vertices such that each is
connected to at least k others in the subset

— k-core is (n-k)-plex

k-clique : maximal subset of vertices such that each is
no more than a distance k away from any of the others

k-clan (k-club) : same as k-clique, but paths should run
within the subset



components and k-components

e components: maximal subset of vertices such
that each is reachable from each of the others

e k-component: maximal subset of vertices such
that each is reachable from each of the others
by at least k vertex-independent paths

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2-component ]

still reachable even if k-1
vertices are removed

3-component

1-component




transitivity

closed

aeb and bec -> aec 5./ V

u & v are friends and v & w are friends

(# of closed paths of length two)
(# of paths of length two)

clustering coefficient:C=

— C=1:clique
— C=0:tree, square lattice
— (# of triangles) X 6 — (# of triangles) X 3
(# of paths of length two) (# of connected triples)

social networks tend to have high values



local clustering coefficient

C __ (# of pairs of neighbors of i that are connected)
i (# of pairs of neighbors of i)

vertices with higher degree have lower local

|
structural holes [ stucre! %—’

— bad for info spread or traffic

— good for the central vertex

e it can control the flow of information

similar to betweenness centrality



=Nael X

e
clustering coefficient with R+ﬁgra ph'
clustering D ] @ @

coefficient . —= ®
> library(igraph » ® > gg3<£graph.tree(10) ® @
gg<fgraph.ring{10) . e > transitivity(gg3) © ®
transitivity(gg) [1] 0 ~
[1] 0 ® ® | >ggd<-graph.star{10,mode= —
> gg2<{graph.ful/(10) ——2—e___ "undirected”) J\ e
> transitivity > transitivity(gg4) ® ®
[1]1 [1]0 |
> transitivity(gg2,\Wpe="global") > gg5<igraph.lattice|c(1%10))
[1] 1 > transitivity(ggb)
e " " 110 ® @
transitivity(gg2,typeN'local") [1]
[1]1111111111 e . — B ——— L © ®
.
> largest.cliques(gg2) . . o
[1]] 0% e%e
' 0% 00 He%e
(110123456789 @ ® %%%%%
@ 5@
local Vi ¥ %%%%@
clustering Yy | %@)@ |

coefficient




redundancy

redundancy of i (R,) : the mean number of
connections from a neighbor of i to other

neighborsofi g _1.1,1,2)21
— minimum : 0 4

— maX|mum I —
tota number of connections

1 /[ between friends ]

C- _ 2 I

_k (k 1)&{ total number of pairs ]

of friends of i




another clustering coefficient

* C,: the mean of the local clustering
coefﬂaents for each vertex

ZC
e We need to be aware of both definitions and
clear which is being used



reciprocity

a Ioop of length two in a directed r;etwork :

:_ZAJ i :lTrAZ m : # of edges

example r= 4/7
seven directed edges
four are reciprocated

WWW : r=57%
Email address book : r=23%

&



sighed edges

e positive/negative edges

* negative edge # absence of edge

* possible triad configurations

stable

unstable

— stable : even number of minus signs

l friends l

l enemies I

©

— unstable configurations occur far less often in real
social networks than stable configurations



b

structural balance

alanced network : containing only loops with

even numbers of minus signs

.+
C

arary’s theorem: a balanced network can be
ivided into connected groups of vertices such

that all connection between members of the

same group are positive and all connections

b
n

— such network is clusterable

etween members of different groups are
egative




proof of Harary’s theorem

e color in the vertices according to the following

algorithm: + N
— connected by + : same color O/® I::>O/O
— connected by - : different color O_/® E>O7.

e conflict of coloring
— the # of — in the loop is odd -> unbalanced

odd #of—{_@_i_ even # of —{O_

e remove all — edges -> groups connected by +



similarity between vertices

e structural equivalence

— sharing many of the same network neighbors

e regular equivalence

— having neighbors who are themselves similar

structural equivalence

regular equivalence

W




cosine similarity

 # of common neighbors of vertices i and |
N; :ZAikAkj :[Az]ij

— normalization is required for the varying degrees

of vertices ith and jth rows of
Xy :! i .

Cosd =

e cosine similarity: Ix]y|
eosn 2 AA
\/Z Ak \/Zk k

. unwelghted simple graph ->A;=1o0r0
AJ A; foralliand j

2 = =k __:ZkAkAkj _
Z A ZkA' |:>Gu \/m \/m




Pearson correlation coefficient (1)

 normalize by the expected number of
common neighbors if connections are made at

random

* verticesiand j have degrees k; and k;
n-1(=n)
A

—

probability that the 1st neighbor that j

| | ' _
0000000 chooses is one of k; vertices -> k./n

probability that the kith neighbor that
chooses is one of k; vertices -> k,/n

—

expected # of common neighbors = kik;/n

(We neglect the possibility of choosing the same neighbor twice,
since it is small for a large networks)




Pearson correlation coefficient (2)

e (actual # of common neighbor) — (expected
number if chosen randomly)

ZAkAkJ Z'A\k K~ Z'Aﬁszjl 1
—ZAk i n< (A RImmZA
—Z[Ak = (ANA)] <
—Z(Ak AN(AL —(A)))
S-S A (AT A (AT A 1(ANA)

positive -> i & j are similar _Zk:A'k g N A><AJ> n<A < >+n<A><AJ
negative ->i & j are dissimilar :Z'AﬁkAjk n(A <A,>




Pearson correlation coefficient (3)

D (Ac—(AD(A—(A)) =n-cov(A, A)
. knormalize -> Pearson correlation coefficient
. CoV(A, A)) _ 2 (A= (A)(A, _<Aj >)
” i} \/Zk(Aik _<Ai>)2\/2k(Ajk _<Aj>)2

—1<r; <1




other measures of structural
equivalence

* normalize n; by dividing by (not by
subtracting) the expected value (kk;/n)

n Z A| =1 : # of common neighbors is exactly as expected
ij k™ ik >1 : more common neighbors than expected

kikj /n Z Alk Z A <1 :less 'com.mo'n neighbors than expgcted
=0 : vertices i & j have no common neighbors

non-negative

e Euclidean distance: # of neighbors that differ
between vertices i & |

- Z(Aik — Aj )2

k
normalize by dividing by its possible maximum value

Zk ('A\k — Ay )2 Zk (Alk + Ay _2AikAjk):1_2 Ny

alternative to cosine similarity

ki +K; ki +K; K. +k



regular equivalence

* define similarity score o;; such that i and j have
high similarity if they have neighbors k and |
that themselves have high similarity

oi=aYy AdAjow e |
ki
o = adAGA P S j

e problems

— not necessary give a high value for self-similarity
(0; )
|:> Ojj = aZ A A0 + 0

GzaAkclsAJrI



regular equivalence (2)

e another problem: repeated iteration of o

¢ =0

o =1

(2) _ A2

(0 - OlA +I 2 i sum overdeven pr(:wefrsl(l)lmy- ) ?]

6(3) _ CZ2A4 +O{A2 —|-I why not consider paths of all lengths:
e better definition: i and j are similarif i has a

neighbor k that is itself similar to |
O :aZAikaj +0;
K
G:%A6+I
G = Z(aA)m =(I-aA)™
m=0




regular equivalence (3)

C = i(aA)m =(I-aA)™

Ionger paths will get less weight than shorter

ones

closely related to Katz centrality

a generalization of structural equivalence
— structural equivalence : # of paths of length two
— regular equivalence : # of paths of all length

variation

— penallze vertices of high degree

ZAkaj

+3,0= oD Ao +1
c=(I-aD'A)" ' =(D-cA)"'D



friendship network at a US high school

e the split from left to right i |s cIearIy primarily
along lines of race

e people have a strong -
tendency to associate * - |
with others whom they
perceive as being similar
to themselves in some way
->“homophily”“

YeIIow White Race
assortative mixing” Green - Black Race

Pink - Other
http://www-personal.umich.edu/~mejn/networks/



assortative mixing by enumerative
characteristics

e vertices are classified according to some
enumerative values

— nationality, race, gender, language,...

 network is assortative if a significant fraction

type not good measure : the fraction is 1 if all
vertices belong to the same single type

assortative disassortative



better definition of assortative mixing

e (fraction of edges that run between vertices of
the same type)-(expected fraction of edges if
they are positioned at random)

* ¢ :class(type) of vertexi (1,..,n,)

e (# of edges that connect the vertices of the
same type) : 2.6(c.c)== ZA,5(C. c;)

edges(i, )



expected # of edges if connections are
at random

e (expected # of edges between i and j if they
are positioned at random) :

medges ___Lopeasiioledies
probability that the other end
of a particular edge = kj/2m

k 2mends

counting all k; edges attached

l Ik(i \ { L \
\W \W to i, the total expected # of
i J

edges between i and j = kik;/2m

e (expected # of edges between all pairs of
vertices of the same type) : Ezl_ig(c_,c.)



modularity (1)

e (# of edges that run between vertices of the same
type)-(expected # of edges if they are positioned
at random)

k k
—Z/W(C C, )——ZZ' —5(c.c)) == Z(AJ )5(0 C;)
. d|V|ded by thefT*(of edges
Z(AJ )5(C C;)

. modularlty measure of the extent to which like is
connected to like in a network

— less than 1

— positive if there are more edges than expected,
negative if there are less edges



modularity (2)

* modularity matrix B, = A _%
m
— used for community detection

 normalizing modularity :assortative coefficient
k. Q 2. (A —kik; 12m)s(c;, c;)

1

=—(2m->) —L65(c,c. =

Qmax 2m ( ; 2m ( | J)) Qmax 2m _Zij (kikj /Zm)g(ci’cj)
normalized version is rarely used



modularity with R+igraph

> g0 <- graph(c(0,1,1,2,2,0,2,3, 3,4,4,5,5,3) ¢ —©
directed=FALSE) 5

> tkplot(g0) @'l@ J

> modularity(g0,c(0,0,0,1,1, 1)} -

1] 0.357142 de“se‘”;‘i‘?;;"viﬁzee°““

> modularity(g0,c(0,0,0,0,1,1); —
[1] 0.1224490 Y, '
> modularity(g0,c(0,1,0,1,0,1)5~
[1] -0.2142857

sparse inside, dense outside ]
— low value




alternative form of modularity

fraction of edges that join vertices of type r
to vertices of type s

ZLZ AS(c,,1)5(c,,5)

fraction of ends of edges attached to vertices
om z kio(Ci. ) of typer

§(c,,c ) = Zé(c,,r)&(cj,r)
—Z(Aﬁj —¥)25(er)5(0,—,r)
Z ZA”5(C,,r)5(cJ,r)——2k5(c,,r)—2k s(c;,r)

= Z (e, —a; ) useful when we have no explicit data on vertex degrees
r



assortative mixing by scalar
characteristics

e vertices are classified according to some scalar
values (age, income,...)

V(|

— “assortatively mixed by age”, “stratified by age”

 the same approach as enumerative values will
miss much of the point about scalar
characteristics

— group vertices into bins (age 0-9,10-19,20-29,...)

and treat the bins as s;garate type

(age 8 and 9) are similar, but (age 9 and 10) are entirely dissimilar




covariance measure

* Xx. :value of vertex i of the scalar quantity
* consider the pairs of values (x;,x;) for the

: . i J
vertices at the end of each edge (i,j) 'kx. 7'\)(_
DA% D kx 1 | J
M= = = iXi w:mean of value of x; at the end of an edge
! n 2mka f value of x; at the end of an ed
Z., A Z. ‘ ! (average over edges, not vertices)

* covariance of x; and x; over edges
2 A (% ,U)(X —ﬂ) 1

2 AJ
Z AXX

ZEZAiXiXJ —

1 [ K. k ]X . positive if values at either end of an }

cov(X;, X;) =

ZA,(XX — K = pax; + 1)

2_ i

2m Au N edge tend to be both large or both small




normalizing covariance

* cov(x,X;) is maximum when x;=x;
1 Ckikj )1 _ kik;
2m ;[Ai 2m jxi - 2m< [ i 2m jxixj
D kidix; = D kidyx; + D kidx; = > kX, :ZAijxiJ
ij i=] i#] i ij
* normalize covariance

A -k r2mxx
Zij (ki5ij - kikj /2m)xixj

-1<r<1



assortative mixing by degree

e assortative: high-degree vertices connect to
other high-degree vertices

e core/periphery structure :
common feature of social network®)

e covariance
cov(k,.k,) =iZ(AJ. —ﬁjkikj

2m 5 2m

g disassortative

e correlation coefficient (assortativity coefficient)
> (A —kik; 12m)kik;
r =
> (k3 kK, 12m)kk,




