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Lecture 2

2 Field Extension

2.1 Extension

• What is a field extension K/k ?

• Extension K/k is finite if K is of finite dimensional as a vector space over k.

• Example : C/R finite, R/Q not finite.

• Simple extension k(α) : The smallest subfield of K containing k and α ∈ K.

• Example : Q(
√

2) = {a + b
√

2 ; a, b ∈ Q}.

Proof. ⊃ is obvious. To see ⊂, show that the right hand side is a field.

• Multiple extension k(α1, α2, · · · , αn) : k(α1, α2, · · · , αn−1)(αn) inductively.

• Example : Q(
√

2,
√

3) = Q(
√

2 +
√

3).

Proof. ⊃ is obvious. To see ⊂, we let α =
√

2 +
√

3, then
√

2 =
α2 − 1

2α
and

√
3 =

α2 + 1

2α
.

• Algebraic versus Transcendental : α ∈ K is algebraic over k if 1, α, α2, · · · , αn are

linearly dependent over k for some n, and transcendental otherwise.

• The set of algebraic numbers over Q is countable (Homework 1). Thus there are

uncountably many transcendental numbers over Q in C.

2.2 Algebraic Extension

• Another formulation of algebraicity : α is algebraic if the evaluation map ϕα :

k[X] → K defined by ϕα(f) = f(α) has nontrivial kernel.

• The kernel of ϕα is generated by a single polynomial p(X) since k[X] is a principal

ideal domain.



• The homomorphism theorem implies

k[X]/(p(X)) ' k[α],

and since k[α] is an integral domain, p(X) is irreducible over k.

• The irreducible polynomial (minimal polynomial) Irrk(α) of α ∈ K : a monic (the

leading coefficient is 1) polynomial generating Kerϕα.

• Example : If k = Q, α = n
√

2, then Irrk(α) = Xn − 2.

Proof. Use Eisenstein’s Criterion (see Homework 6) !

• Example : If k = Q(
√

2), α = 4
√

2, then Irrk(α) = X2 −
√

2.

• Algebraic extension K/k : If any element α ∈ K is algebraic over k.

• Proposition 2.2.1 : If K/k is a finite extension, then K is algebraic over k.

Proof. If the dimension of K as a k vector space is n, then 1, α, α2, · · · , αn cannot

be linearly independent for any nonzero α ∈ K.

• Remark : The converse is not true. For example, the set of all algebraic numbers

over Q turns out to be a field (Homework 7) and an infinite algebraic extension over

Q.

• Degree of extension [K : k] : Dimension of K as a k vector space. It is either a

positive integer or ∞.

• Proposition 2.2.2 : Let K/k and L/K be field extensions. Then, L is an extension

of k and

[L : k] = [L : K][K : k].

Proof. The first statement is routine to check. To see the identity, choose a basis

{xi ∈ L ; i ∈ I} of L over K and a basis {yj ∈ K ; j ∈ J} of K over k, and show

that {xiyj ; i ∈ I, j ∈ J} forms a basis of L over k.

• Corollary 2.2.3 : L/k is finite if and only if both L/K and K/k are finite.

• Proposition 2.2.4 : Let α ∈ K be algebraic over k. Then k[α] = k(α), and k(α)

is finite over k. The degree [k(α), k] is equal to the degree of Irrk(α).



Proof. Let p(X) denote Irrk(α) and f(X) ∈ k[X] such that f(α) 6= 0. Then since

(p, f) = 1, there exist g, h ∈ k[X] such that

g · p + h · f = 1.

This implies that f is invertible in k[α], and hence k[α] = k(α).

The rest is to show that {1, α, · · · , αdeg p−1} forms a basis of k(α).

Suppose that 1, α, · · · , αdeg p−1 are not linearly independent, then there is a polyno-

mial g of degree ≤ deg p−1 such that g(α) = 0. This contradicts to the irreducibility

of p(X).

Choose f(α) ∈ k(α) where f ∈ k[X]. Then there are unique polynomials q, r ∈ k[X]

with deg r(X) < deg p(X) such that

f(X) = q(X)p(X) + r(X),

and f(α) = r(α). Thus 1, α, · · · , αdeg p−1 generate k(α).

2.3 Algebraic Closure

• Algebraically closed field K : If every polynomial in K[X] of degree ≥ 1 has a root

in K.

• Example : By the fundamental theorem of algebra, C is algebraically closed.

• Theorem 2.3.1 : Let k be a field. Then there exits an algebraic extension Kalg

which is algebraically closed (called algebraic closure of k). Kalg is unique up to

isomorphism inducing the identity on k.

Proof. See some textbook, for example, S. Lang; Algebra, GTM Springer, 2002.

• Example : The algebraic closure of R is C.

• Example : The algebraic closure of Q is the field of algebraic numbers.

2.4 Homework

1. Show that the set of algebraic numbers over Q is countable.

2. Show that π and e are transcendental over Q.



3. Let α be a root of the equation

X3 + X2 + X + 2 = 0.

Express (α2 + α + 1)(α2 + α) and (α − 1)−1 in Q(α) in the form

aα2 + bα + c

with a, b, c ∈ Q.

4. Suppose α is algebraic over k of odd degree. Show that K(α) = k(α2).

5. Show that
√

2 +
√

3 is algebraic of degree 4 over Q.

6. Prove Eisenstein’s criterion : Let f(X) = anXn + an−1X
n−1 + · · ·+ a1X + a0 be

a polynomial of integer coefficients. If there exists a prime p such that

(1) p divides each aj for j 6= n,

(2) p does not divide an, and

(3) p2 does not divide a0,

then f(X) is irreducible over Q.

7. Show that the set of algebraic numbers over Q forms a field.


