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Notations 

• Formulation and solution of mathematical optimization 
(minimization) programs. 

• Conditions that the optimum solution should have, and its 
uniqueness. 

 

• Variable vector 

 

• Objective function 

 

• The j-th constraints   
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Characteristics of the optimal solutions to mathematical programs 



Optimization Program (standard form) 
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Assumptions on Non-linear Optimization 

• Existence: at least one feasible solution 
• Finite minimum 
• Continuity: objective function and constraints are 

continuously differentiable 
 
 

----------------------------------------------- 
• Single variable minimization without constraints 
• Multivariable minimization without constraints 
• Multivariable minimization with constraints 
• Some special cases (but frequently used in UE analysis) 

 
 

cf. discrete (combinatorial) optimization 



2.1_Unconstrained Minimization Program 
with One Variable 

• Necessary condition (first order condition) ; if z(x) has a 
minimum at x=x*, the derivative of z(x=x*) equals zero. 

 

 

• Stationary points;  

 

 

 

• If a function is ditonic, its stationary point is a global minimum.  
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Strictly Convex 

• A sufficient condition for a stationary point to be a local 
minimum is for the function to be strictly convex in the vicinity 
of the point. 

• Strictly convexity; a line segment connecting any two points of 
the function lies entirely above the function. 
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Uniqueness Condition 

• If a function is twice differentiable, ‘strictly convex’ is equal to 
that the second derivative is positive. 

 

 

• If the function is strictly convex, a local minimum point is the 
unique global minimum.   

 

• For strictly convex function, the necessary condition becomes 
the necessary and sufficient condition. 
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Find the global minimum  solution of the following problem. 
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(Strictly) Convex 

• (strictly) Convex; a line segment connecting any two points of 
the function never lies below the function. 

 

 

• There may be a flat bottom, and the minimum solution is not 
necessarily unique. 
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2.2.1_Unconstrained Minimization 
Program with Multiple Variables  

• Gradient  vector is the vector of partial derivatives. 

 

 

 

• The first-order condition (necessary condition) for a minimum 
at x=x* is that the gradient of z(x) vanish at x*. 
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Simultaneous equations 



Convexity of Multivariate Function 

• Strictly convexity; a line segment connecting any two points of the 
function lies entirely above the function. 

 

 

• Hessian Matrix; matrix of the second derivatives 

 

 

 

 

 

 

 

• When Hessian is ‘positive definite’, the function is strictly convex. 

• When z(x) is strictly convex, the first-order condition becomes the 
necessary and sufficient condition. 
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Positive Definite → Linear Algebra 

• A matrix H is positive definite if one of three 
conditions are satisfied. 

1. All eigenvalues are positive, 

2. A quadratic form is positive. 

3. All minor determinants are positive, 
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Any diagonal matrix with positive element is positive definite. 
This can be applied to the objective function of UE problem. 



Exercise 
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1. Show gradient vector of z(x). 
2. Show Hessian matrix of z(x). 
3. Obtain all eigenvalues of H. 
4. Examine the quadratic form for H. 
5. Calculate all minor determinants of H. 
6. Discuss the convexity of z(x).  
7. Find the optimum solution of Min. z(x). 

 



Application: Multiple Regression Analysis 

• N sets of samples are observed for three variables X,Y 
and Z. A linear relation can be assumed. Estimate the 
parameters (α, β, γ) by multiple regression analysis.    
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S is a function of parameters S(α,β,γ) 



• When S is strictly convex*, the optimum solution 
satisfies  
 

• Linear simultaneous equations 
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A data matrix and a vector make a simpler equation. 
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2.2.2_Constrained Minimization Programs 

• A minimization program with multiple constraints. 
 

• A feasible area is convex if gj(x) is concave. 
• A common area surrounded by multiple convex area is also convex.  
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Common area is convex 

A line segment connecting any two points in the area never goes out of the 
area. If all constraints are linear, feasible area is convex. 



Effective Constraints 

• Some of the constraints bind the optimum solution. They are 
called as effective. 

• Gradient vectors of effective constraints                   and the 
gradient vector of objective function                 are balanced at 
optimum. 
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If the constraint is effective,  

there exists a positive variable u. 
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At optimum, two gradient vectors  
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When two constraints are effective, 

• Gradient vector of the objective function stays within a 
cone of two gradient vectors of the effective constraints. 
 

• Two positive variables u1 and u2 exist that satisfy 
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Kuhn-Tucker Conditions 

• The first-order condition is generally written as; 
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If the j-th constraint is effective, uj > 0 and bj – gj(x*)=0 
If the constraint is not effective, uj = 0. 
 
The auxiliary variable uj is named as dual variable as well as 
Lagrange multiplier.  
 
The underlined part is known as the complementary slackness condition.  



Exercise 

1. Show the Kuhn-Tucker conditions for the following 
minimization problem. 

 

 

 

 

2. Find optimum solution by using KT conditions. 

 

3. Compare the solutions if the constraint is changed by; 
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2.3.1_Nonnegativity Constraints 

• The first-order conditions for one dimensional case. 

 

 

• If non-negativity constraint is not binding,  

 

 

• If the constraint is effective, 

 

 

• Both cases are written as a whole; 
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• Multidimensional case, 

 

 

• Either positive area, 

 

 

• Or on the boundary of the feasible region, 

 

 

• Accordingly the first-order conditions can be; 
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2.3.2_Linear Equality Constraints 

jforbxh

tosub

z

j

i

iij 

.

)(.min x
constant 

ijij hxg  /)(x

Note that  

Kuhn-Tucker conditions are; 

iforhuxz
j

ijji  /*)(x

jforbxh j

i

iij  *

All constraints are binding and the complementary slackness 
conditions are automatically satisfied. 



Lagrangian Multiplier Method 

Objective function and constraints are combined with dual 
variable known as Lagrangian multipliers. 
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2.3.4_Nonnegativity and Linear Equality 
Constraints 
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The first-order conditions for the non-negativity constraints case are 
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Example 
Two cities A and B are connected by two routes.  
The amount of emission from each route is a function of  
traffic volume of each route.  

We would like to find the optimal route flows which can 
minimize total emissions. 
When total traffic flow between two cities is given as 10,  
formulate the optimum assignment problem, and find the 
optimum solution. How about the total traffic is given as 4? 
 
It is not necessary to consider the route choice of the drivers. 
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