Transport Network Analysis 2014

Chapter 2

Basic Concepts in Minimization
Problems

Theory of Non-Linear Programming (NLP)
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Notations

Characteristics of the optimal solutions to mathematical programs

Formulation and solution of mathematical optimization
(minimization) programs.

Conditions that the optimum solution should have, and its
uniqueness.

- T
Variable vector X = (X11 Xoyeey Xiyeny X )

Objective function  z(X)

The j-th constraints of (X) = bj for 1=12,.J



Optimization Program (standard form)

Min. (minimize) z(x)
sub. to (subjectto) g;(x)=b,  for_J=12,..J

example
Min.  z(x,,X,) =X +2X5 +2X,X, — 2X, —4X,

sub. to
— X, — X, >4 o 0 (X) 2D

— X, 42X, > 2 - 9.(X) 2Dy



Standard form

g,(x)<b, = —g;(x) = -b;

g,(x)=b; = g;(x)=b;, g;(x)<b,

Feasible solution satisfies all constraints
of (X) = |gj for 1=12,.J

Optimum (minimum) solution X

Z(X*) < z2(X) forany feasible solutions,

and _
* _



2(X) o Surface of
objective function Z(X)

15t constraint

| Feasible area
| satisfies all constraints

2"d constraint

Contour of

the objective function
Z(X) = const.



Assumptions on Non-linear Optimization

* Existence: at least one feasible solution

* Finite minimum

e Continuity: objective function and constraints are
continuously differentiable

cf. discrete (combinatorial) optimization

e Single variable minimization without constraints

* Multivariable minimization without constraints
 Multivariable minimization with constraints

* Some special cases (but frequently used in UE analysis)



2.1 _Unconstrained Minimization Program
with One Variable

[ Min.  z(X) ]

Necessary condition (first order condition) ; if z(x) has a
minimum at x=x*, the derivative of z(x=x*) equals zero.

dz(x*)/dx=0

Z(X) A
Local minima

Stationary points; \ \
dz(x)/dx =0 W\

>
X

If a function is ditonic, its stationary point is a global minimum.



Strictly Convex

* A sufficient condition for a stationary point to be a local

minimum is for the function to be strictly convex in the vicinity
of the point.

e Strictly convexity; a line segment connecting any two points of
the function lies entirely above the function.

Z(X, + (L-0)x,) <z(x,)+1L-0)z(x,) 0<0<1

() p

er(x,)+(1-0)z(x,) ¢

Z(x, +(1-6)x,) \\§<j\

X, X, +(1-0)x, X, X

Heavy in the middle




Uniqueness Condition

If a function is twice differentiable, ‘strictly convex’ is equal to
that the second derivative is positive.

d?z(x)/dx* >0

If the function is strictly convex, a local minimum point is the
unique global minimum.

For strictly convex function, the necessary condition becomes
the necessary and sufficient condition.

Find the global minimum solution of the following problem.
Min. _z(x) = x*+2x-2



(Strictly) Convex

e (strictly) Convex; a line segment connecting any two points of
the function never lies below the function.

z(x, +(1-0)x,) <0(x,)+1L-60)z(x,) 0<f<1

 There may be a flat bottom, and the minimum solution is not
necessarily unique.

N

d®z(x)/dx* =0

\ 4




2.2.1_Unconstrained Minimization
Program with Multiple Variables

[ Min.  z(x) ] X = (X, Xy reer Xiyery X, )

* Gradient vector is the vector of partial derivatives.

sz(x) = (0z(x) 1 0%, 02(X) | X, ......, 0Z(X) 1 0%, )'

Nabla

* The first-order condition (necessary condition) for a minimum
at x=x* is that the gradient of z(x) vanish at x*.

Vix*) =0 < oz(x*)/ox. =0 for_1=12,..,]1

Simultaneous equations



Convexity of Multivariate Function

Strictly convexity; a line segment connecting any two points of the
function lies entirely above the function.

z(X, +(1-0)x,) <(x,)+1-6)z(x,)
 Hessian Matrix; matrix of the second derivatives

o’z(x)/ox;  9°z(X)/ox,ox, .. 9°Z(X)/0ox, X,

2 ) )
H (X) = V22(X) = 0 z(x){@xzéx1 0°7(x)/ 0x,

0°7(X)/ OX, OX, . . 0CI(X)/ox!

 When Hessian is ‘positive definite’, the function is strictly convex.

 When z(x) is strictly convex, the first-order condition becomes the
necessary and sufficient condition.




Positive Definite - Linear Algebra

A matrix H is positive definite if one of three
conditions are satisfied.

1. All eigenvalues are positive, )
2. A quadratic form is positive. hHh' >0 for _h=0

3. All minor determinants are positive,

all ' : aln
a a all a12 a13 ]
la,,|>0, oS0, 2, a,, a.>0, .., N N0
11 a a 21 22 23 a
21 22 a a a ij
31 32 33 a ) a
nl " ' nn

Any diagonal matrix with positive element is positive definite.
This can be applied to the objective function of UE problem.



Exercise
Z(X,, X,) = X7 +2X2 +2X, X, — 2X, —4X,

. Show gradient vector of z(x).

. Show Hessian matrix of z(x).

. Obtain all eigenvalues of H.

Examine the quadratic form for H.

. Calculate all minor determinants of H.
Discuss the convexity of z(x).

Find the optimum solution of Min. z(x).



Application: Multiple Regression Analysis

* N sets of samples are observed for three variables X,Y
and Z. A linear relation can be assumed. Estimate the
parameters (o, B, y) by multiple regression analysis.

BERES X Y Z
Zi =a+ X + W & 1 X, Y. I

i=12,...,N 2 2 Y2 %
g _random _error

N AN .yN Z.N
{Mi”imize SZZN:Ei2=ZN:{Zi—(a+,5><i+7yi)}2 J

S is a function of parameters S(a,B,y)




* When S is strictly convex*, the optimum solution
satisfies
VS(e, B,7) =0

* Linear simultaneous equations

[ N N /N
N Z X Z Yi Z Z;
i=1 i=1 104 i=1
N N N N
le lez in yi IB — ZXIZI
i;l |\I|:1 i=&| 7/} i;l
Zy| le yi Z:yi2 Zylzl
i=1 i=1 = i=1

*) Almost always ‘yes’, but extremely strong correlation among variables
may disturb this.



A data matrix and a vector make a simpler equation.

S 21
a
X, Y2 22
/4
L Xy Y Zy

Linear equation becomes;
D'Db=D'z

Parameter vector is estimated as;

b=[D"D]'D"z



2.2.2_Constrained Minimization Programs

A minimization program with multiple constraints.

A feasible area is convex if gj(x) is concave.
A common area surrounded by multiple convex area is also convex.

N X2 A X2 A X2
X
X X 1
)l >1 >
Contour of a constraint Convex area for Common area is convex

g;(x) = const. g;(X)=b,

A line segment connecting any two points in the area never goes out of the
area. If all constraints are linear, feasible area is convex.



Effective Constraints

* Some of the constraints bind the optimum solution. They are
called as effective. g;(X*)=b,

* Gradient vectors of effective constraints Vg, (X*) and the
gradient vector of objective function Vz(x*) are balanced at

optimum.
2 2
Z(X;, X,) =X + X, ) g(X, %,)=%X +X,-2>0
Gradient vector Az Gradient vector X
_ Vg(x)=| ‘| x
(e R




At optimum, two gradient vectors If the constraint is effective,

should have the same direction. there exists a positive variable u.

9(x;,%,)
=X +X,-2=0

VZ(X*) — ulvgl(X*)

On the constraint, but not optimum.



When two constraints are effective,

* Gradient vector of the objective function stays within a
cone of two gradient vectors of the effective constraints.

* Two positive variables u1 and uz exist that satisfy

VZ(X*) = ulvgl(X*) +U,V0, (X*)

(82 (x*)/0x, J

0,090 ) (09,0 1n,
Gu) x, ( ]Mz( ]

00,000, )\ g, (x4




Kuhn-Tucker Conditions

* The first-order condition is generally written as;

oz(x*)/ox;= Y u;[og,(x*)/ox] forall i=12..,1
j

u; 20, ufb;—g;(x91=0,  g,(x*)=b,

J )

forall j=12..,J

If the j-th constraint is effective, u; > 0 and b; — gj(x*)=0
If the constraint is not effective, uj= 0.

The auxiliary variable uj is named as dual variable as well as
Lagrange multiplier.

The underlined part is known as the complementary slackness condition.



Exercise

Show the Kuhn-Tucker conditions for the following
minimization problem.

min.  z(X,,X,) = X +2X5 + 2X,X, — 2%, — 4X,
sub.to
X, +X, =22

Find optimum solution by using KT conditions.

Compare the solutions if the constraint is changed by;

X, + X, =2



2.3.1 Nonnegativity Constraints

The first-order conditions for one dimensional case.

min. z(x), subto x>0

If non-negativity constraint is not binding,

X* >0 dz(x*)/dx =0

If the constraint is effective,

x*=0 dz(x*)/dx >0

Both cases are written as a whole;

x*[dz(x*)/dx]=0 and  dz(x*)/dx>0



 Multidimensional case,

min. z(x), subto x. >0 forall I

* Either positive area,
.*>0 and oz(x*)/ox =0
* Oron the boundary of the feasible region,

X.*=0 and oz(x*)/ox. =0

* Accordingly the first-order conditions can be;

x. *loz(x*)/ox. |[=0 and  az(x*)/éx, =0  forall



2.3.2_Linear Equality Constraints

min. Z(X) constant

sub.to
ﬁj for |

Note that
0g (X)/ox; = hij

Kuhn-Tucker conditions are;

—az(x*)/é?xi =>uh, for i
j

Zhijxi *=b, for j

-

All constraints are binding and the complementary slackness
conditions are automatically satisfied.



Lagrangian Multiplier Method

Objective function and constraints are combined with dual
variable known as Lagrangian multipliers.

L(x,u) = z(x)+Zu [b, —Zh” ,
The first-order condltlons of this unconstrained program are

OL(x*,u*)/ %, =0 for  i=12,...1

-

oL(x*,u*)/ou; =0 for j=12,...J
This is equivalent to Kuhn-Tucker conditions.

Uj*>0 means ZhUXI_

U;*<0 means Zh.,X.—-



2.3.4_Nonnegativity and Linear Equality
Constraints

x>0 for |

\_ _/
Lagrangian function with non-negativity constraints is
min.  L(x,u)=z(x)+ Y u;[b, = > hix]
i [

sub.to

X. >0 for 1=12,..,1



The first-order conditions for the non-negativity constraints case are

x.*>0 and oL(X*,u*)/ox. =0

X.*=0 and oL(xX*,u*)/ox. =0

and

oL(x*,u*)/ an =0 and X*>0 original constraints



Example

Two cities A and B are connected by two routes.
The amount of emission from each route is a function of

traffic volume of each route. flow on route-1 X;
{El(xl) =10%, +X?/2
E2 (Xz) _ X22 route-2

flow on route-2 X,

We would like to find the optimal route flows which can
minimize total emissions.

When total traffic flow between two cities is given as 10,
formulate the optimum assignment problem, and find the
optimum solution. How about the total traffic is given as 4?

It is not necessary to consider the route choice of the drivers.



