

GSICのガイダンス資料を抜粋・改変

TSUBAME 2.0 ガイダンス

TSUBAME2.5の特徴(1)

- ・理論値5.7PFlopsのばく大な演算性能
 - CPU合計性能: 220TFlops
 - GPU合計性能: 5.5PFlops
- 合計容量7.1PByteの巨大ストレージ
- バイセクションバンド幅200Tb/sの高速光ネット
 ワーク

TSUBAME2.5の特徴(2)

- ソフトウェア資産の継続性と新規運用
 - 既存のMPI, OpenMP, CUDAなどで記述されたプログラ ムの利用
 - GPU向けにOpenACCも利用可能
 - 既存ISVアプリの大部分の利用
 - SUSE Linux Enterprise 11
 - 新たにWindows HPC Serverの運用 (今回は説明対象 外)
- GPU対応アプリも採用、ぜひ使ってください
 - CPUよりも計算が短時間で済む⇒課金も少なくてすむ

ハードウェア構成

スーパーコンピュータTSUBAME2.5 システム構成

計算ノード(1)

- Thinノード, Mediumノード, Fatノードの三種類
- Thinノード: 1408台 [一番良く使われる計算ノード]
 - HP Proliant SL390s G7
 - CPU: Intel Xeon 2.93GHz 6コア×2=12コア
 - Hyperthreadingのために24コアに見える
 - GPU: NVIDIA Tesla K20X 3GPU
 - Memory: 54GB (一部は96GB)
 - SSD: 120GB (一部は240GB)
 - ネットワーク: QDR InfiniBand x 2 = 80Gbps

計算ノード(2)

- Medium/Fatノード:M24台 + F10台
 [大容量メモリが必要なジョブ向け]
 - HP Proliant DL580 G7

- Hyperthreadingのために64コアに見える
- Memory: 128GB (Medium), 256/512GB(Fat)
- SSD: 480GB
- ネットワーク: QDR InfiniBand x 1 = 40Gbps

TSUBAME2のストレージ

- ホームディレクトリ用 (/home)
 全ユーザが最初から利用可能
 - NFS, CIFS, iSCSI
 - BlueArc Mercury 100 (一部GridScaler)
 - DDN SFA 10K \times 1, SATA \times 600 disks
- ・ 並列ファイルシステム
 グループ購入必要
 - Lustre (/work0, /work1)
 - MDS : HP DL360 G6 × 6
 - OSS : HP DL360 G6 × 20
 - DDN SFA 10K × 3, 2TB SATA × 3550 disks, 600GB SAS × 50 disks
 - 他. アーカイブ向きの/data0

TSUBAME 2.0 ガイダンス

実際の利用について

- 利用開始までの流れ
- 課金とTSUBAMEグループについて

TSUBAME2の利用開始

- 利用申請(必須)
 - 東工大ポータルにログインして、メニューからTSUBAME利 用ポータルにシングルサインオン(SSO)で申請

東エ大ポータル:http://portal.titech.ac.jp

- メールで仮パスワード発行、TSUBAME利用ポータルで本 パスワードを設定して利用開始
- ペーパーレスで即日利用が可能
- TSUBAME2へのログイン
 - 従来通りにSSHによるログイン
 - 学外からは鍵認証のみでログイン可能とし、セキュリティ を強化

TSUBAME利用ポータル

- 以下のサービスが利用可能なwebページ
 - アカウント新規利用申請、利用者情報の変更、利用停止 (利用者自身)
 - TSUBAMEグループの作成、管理
 - 予算の追加、登録(予算管理者のみ)
 - Hキューの予約(グループ参加者)
 - 有償サービス利用履歴閲覧(利用者ごと、管理者)
 - 課金請求データの閲覧(予算管理者のみ)
- 入り方(1): 東工大ポータルから
- 入り方(2): <u>http://tsubame.gsic.titech.ac.jp/</u>からTSUBAME portalリンク、TSUBAMEアカウントでログイン

TSUBAME2上で利用できるサービス

- 無償サービス
 - インタラクティブ、デバッグ専用ノードの利用
 - 小規模の計算試験(2ノード10分間まで)
 - 個人用ストレージサービス(home領域、
 - 全学ストレージ、学内ホスティング)
- 有償サービス
 - 研究目的の大規模計算(従量制、定額制)
 - Work領域, Data領域(グループ利用、月額制)
 - 追加ISVアプリケーション利用(予定)

有償サービス

- 研究室、研究プロジェクト単位でグループ作成 (TSUBAMEグループ)
- TSUBAMEポイントによるプリペイド従量制
 - 1ポイントで従来の1ノード・時間を利用できるポイント制
 - 1口=6000円/600ポイント
- 定額制の仮想ノード計算サービス
- グループ共有の大規模work領域サービス

ソフトウェア構成と使い方

- ・ バッチキューの構成と使い方
- アプリケーション

System Software

	TSUBAME 2
Linux OS	SUSE Linux Enterprise Server 11 SP1
Windows OS	Windows HPC Server 2008 R2
Job Scheduler for Linux	PBS Professional
Job Scheduler for Windows	Windows HPC Server

Compilers & Libraries

TSUBAME 2CompilerIntel Compiler 2013
PGI CDK 14
gcc 4.3.4MPIOpenMPI 1.6.3
MVAPICH2 1.5.1CUDA5.5

- コンパイラの切り替えは環境変数の設定で可能
 利用の手引をご参照ください
- CUDA C/FortranによるGPUプログラミング可能
 - CUDA+MPIの場合はコンパイラの組み合わせについてご相談を
- バージョンアップの可能性あり

TSUBAME2へのログイン(1)

計算ノードたち(1000ノード以上)

TSUBAME2へのログイン(2)

- Linuxなどからの場合
 - ssh [アカウント名]@login-t2.g.gsic.titech.ac.jp
- Windowsの端末ソフトからの場合(putty, ttsshなど)
 - ホスト名:login-t2.g.gsic.titech.ac.jp
 - プロトコル:SSH
 - ポート: 22
- ユーザ名(アカウント名)・パスワードを正しく入力
- →様々なメッセージの後に以下のように表示されればログイン 成功

10B12345@t2a006163:>

バッチキューシステムとは

- TSUBAME2ではPBSProというバッチキューシステムでジョブ(プロ グラム)を投入
- 多数のプログラムの「交通整理」
 - OSはノード内、バッチキューシステムはノード間の管理

ユーザが自分でノード決定 混雑すると実行が遅くなる

- インタラクティブノード

 i:インタラクティブ専用ノード
 t:Tesla(GPU)デバッグ専用ノード
- ・バッチキュー
 - [S] /ード占有系: 12CPUコア、3GPUの/ード利用
 - [H]予約系: Thinノードをノード数、期間を予約して利用
 - [V] 仮想マシン共有系: 8CPUコア(16hyperthread) の仮想ノー ド利用
 - [G] GPU系: 4CPUコア、3GPUのノード利用
- ・ グランドチャレンジ(超大規模並列)制度
 - 数千~万の超大規模並列計算のための利用(要審査、年に 2回)

ノード占有系:Sキュー・Lキュー

- Sキュー:12CPUコア, 3GPU, 54GBメモリを持つノード を利用
 - 従来のSLAキューに相当
 - 多数CPUまたはGPUによる並列性や、I/O(ディスク・通信) 性能が必要なジョブ向け
 - ノード内のジョブ混在は起こらない
 - 従量制課金
- 大容量メモリが必要なジョブには、S96, L128, L256, L512キュー
 - 数字はメモリ容量(GB)
 - Sに比べ1.5倍、2倍…の課金
 - L系はMeduim/Fatノード。CPUコア数が多く、GPUが古い TSUBAME 2.0 ガイダンス 23

予約系:Hキュー

- 予約した期間ノードを占有して利用
 - 従来のHPCキューに相当
 - 1000CPUコアレベルの並列性が必要なジョブ向け
 - Webから日程・ノード数を予約
 - バッチキューを介さない利用も可
 - 従来よりも、柔軟な予約が可能
 - ・ノード数は16以上自由、期間は一日単位で最大7日

仮想マシン内共有系:Vキュー

- ノードあたり8CPUコアを利用
 - 従来のBESキューに近い
 - 逐次ジョブや比較的小規模なジョブ向け
 - KVM仮想マシン技術により、以下のようなノードに見 える
 - 8CPUコア (hyperthreadingで16コアに見える)
 - 32GBメモリ
 - ・ TSUBAME 1.2ノード相当、GPUは無し
 - ノード内にジョブは混在しうる (BESキューのように)
 - I/O速度は他キューより下がるので注意
 - 定額制課金

GPU系:Gキュー

- ノードあたり3GPU+4CPUコアを利用
 GPUジョブに適している
 - 以下のようなノードに見える
 - ・4CPUコア
 - 3GPU
 - 22GBメモリ
 - Vキュージョブと仮想マシン技術によりノードを共有
 - 従量制課金、Sに比べ0.5倍 (お買い得)
 - 定期的にGSICがGPU講習会開催 (ほぼ毎回満員 御礼)

主要サービス比較

S ノード占有系 S96, L128など	従量	300台	並列度・I/O速度重視 演算性能2倍,メモリバンド幅3倍 (T1.2比)を占有 GPUジョブもOK
✔ 仮想マシン内共有 系	定額	440台(Linux) 40台(Windows)	比較的小規模ジョブ向け T1.2に近い性能、ただしI/Oはやや 弱め
H 予約系	従量	420台	大規模並列向け 1日単位1ノード単位で予約が可能 に
<mark>G</mark> GPU系	従量	480台 (Vと共有)	GPUジョブ向け GPU+MPIもOK
グランド チャレンジ		700~1300台	超大規模ジョブ向け 審査制、年数回予定

※ 各キューへの配分ノード数は今後の利用状況に応じて調整します

バッチキューの使い方 t2subコマンドの基本

- PBS Proというバッチキューシステムを用いて計算ノードにジョブ投入します
- myprogというプログラムを、Sキューで実行する場合
- (1) 同じディレクトリにスクリプトファイルを作っておく(たとえばjob.shという ファイル) ⇒ chmod 755 job.sh などにより「実行可能」の必要

#!/bin/sh cd \$PBS_O_WORKDIR ./myprog

job.shファイル

(2) t2subコマンドで投入

t2sub –W group_list=xxx –q S ./job.sh

-q xxx: キュー名を指定

-W group_list=xxx: TSUBAMEグループ番号を指定

(1)myprogがMPIプログラムとする。スクリプトは以下のように:

job.shファイル

#!/bin/sh cd \$PBS_O_WORKDIR mpirun —n 並列数 —hostfile \$PBS_NODEFILE ./myprog

(2) t2subコマンドで投入

t2sub –q S –W group_list=xxx –l select=10:mpiprocs=12 ¥ -l place=scatter ./job.sh

• この場合、ノードあたり12並列×10ノード=120並列で実行

t2sub –W group_list=xxx –l select=1:ncpus=8 –q S ./job.sh

• この場合、1ノード内で、8並列で実行

T2subのその他のオプション

- -l walltime=10:00:00
- ジョブの最大実行時間。省略すると1時間
- -l mem=40gb
- ジョブが利用するメモリサイズ(ノードあたり)。省略すると1GB
- -o /xxx/yyy.txt
 標準出力の出力先ファイル名
- -e /xxx/yyy.txt

標準エラー出力の出力先ファイル名

詳細はweb上の「利用の手引」をご参照ください

バッチキュー関係コマンド

• t2stat

ジョブの状態を確認。通常は自ジョブのみ 例) t2stat –all: 他ユーザのジョブも表示 例) t2stat V: 指定したキュー(V)の情報のみ表示

- t2del
- ジョブの終了を待たずに削除

例) t2del 147.t2zpbs03

ユーザが利用可能なストレージ構成

Home領域	Work領域
• 用途	• 用途
 - 計算ノードのホームディレクト リ(NFS) - (学内ストレージサービス (CIFS)) - (学内ホスティングサービス (iSCSI)) • 利用方法 - 1ユーザあたり25GBまで無料 - ~ユーザ名/でアクセス可能 	 - 大規模データ格納 - Linux計算ノードからアクセス 可能 (Lustre) - グループ単位で利用可能 • 利用方法 - TSUBAMEグループ単位で要申 請。TB × 月で課金 - /work1, /work0

テープライブラリと連携した階層型ファイルシステム(GPFSによる/data0)もあり

TSUBAME 2.0 ガイダンス

Work領域の利用方法

- 「グループ管理者] TSUBAMEグループを登録、ディス クオプションを有効に ⇒ /work1または/work0以下 にグループ名のディレクトリが生成
- ・ [各ユーザ] 生成されたディレクトリ内に自分の作業
 ディレクトリを作成する

例:/work1/t2g-group-name/USER01, USER02,

利用上の注意

 インタラクティブノードでは長時間CPUを独占するプロセスを走らせない でください (数分が目安)

- エディタ、コンパイラ、可視化ツール等はok

- 大量にディスクI/Oを行う場合は/homeではなく/work1, /work0を利用してください
- アカウントの貸し借り禁止

TSUBAME2の情報入手

TSUBAME2 WWWサイト

http://tsubame.gsic.titech.ac.jp/

- 特に大事なのは、メニュー⇒利用について⇒各種利用の手 引き⇒TSUBAME2.5利用の手引き
- Top⇒「Current Status」で, 今の混雑具合やシステム利用電 カを閲覧
- TSUBAME2についての問い合わせ先

soudan@o.cc.titech.ac.jp

数人のGSIC/NECメンバーが数千人のユーザからの質問を 受け付けています. FAQも一度読んでから!