Lecture 1

1 Review on Basic Algebra

1.1 Integer

- Prime p?
- Prime Factorization $n = p_1^{e_1} p_2^{e^2} \cdots p_m^{e^m}$?
- Division Theorem : $n = q \cdot m + r$ where r < m.
- Greatest Common Divisor (n, m)?
- Euclidean Algorithm?
- Fermat's little theorem?

1.2 Group

- Abelian Group G?
- (Normal) Subgroup $H \triangleleft G$ and Quotient Group G/H?
- Examples: \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{Z}/n\mathbb{Z}$.
- (Group) Homomorphism $f: G \to H$ and Isomorphism?
- Homomorphism Theorem : If $f:G\to H$ is a surjective homomorphism, then $\bar{f}:G/\mathrm{Ker}f\to H$ is an isomorphism.
- Fundamental Theorem of Abelian Groups: A finitely generated abelian group is isomorphic to a product of cyclic groups in a unique manner.

1.3 Ring

- Commutative Ring with Unit R?
- Ideal $\mathfrak{a} \subset R$?
- Quotient Ring R/\mathfrak{a} ?

- Examples: \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{Z}/(n)$.
- (Ring) Homomorphism $f: R \to S$ and Isomorphism.
- Homomorphism Theorem : If $f:R\to S$ is a surjective homomorphism, then $\bar f:R/\mathrm{Ker} f\to S$ is an isomorphism.
- Integral Domain?
- Principal Ideal Domain?

1.4 Field

- Field K?
- Characteristic of Field?
- (Field) Homomorphism $f: K \to L$ and Isomorphism ?
- Examples : \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{Q}(\sqrt{d})$, \mathbb{F}_p

1.5 Polynomial

- Polynomial Ring K[X]?
- Division Theorem : $f = q \cdot g + r$ where $\deg r < \deg g$.
- Greatest Common Divisor (f, g).
- Euclidean Algorithm.
- Theorem : K[X] is a principal ideal domai.
- Irreducible Polynomial over K.
- Theorem: If $f \in K[X]$ is irreducible, then K[X]/(f) is a field.
- Examples : $\mathbb{R}[X]/(X^2+1) \simeq \mathbb{C}$, $\mathbb{Q}[X]/(X^2-2) \simeq \mathbb{Q}(\sqrt{2})$, $\mathbb{F}_2[X]/(X^2+X+1) \simeq \mathbb{F}_4$