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Digital Filter Design

s FIR

= possibly linear-phase response
= always stable

= |[IR
= Sharp cutoff with lower order

Different Design Methods



Design of FIR Filters

having Linear-Phase
" N-tap (N-1* order) FIR Filter

N—-1
H(z) = h(n)z™"

N-1
H(e/®) = Z h(n)e /"
n=0

has linear-phase if it can be written as H, (w)e 7/ (@@+5),
where H, Is a real even function in w

When H, (w) is positive  argH(e/®) = —aw —
When H, (w) is negative argH(e/®) = —aw —f—m 3



Four Types of Linear-Phase
FIR Filters (1)

s N=2M+ 1,h(n) = h(N — 1 —n), for all n .|H\|.

H(e/®) = 3N _ h(M + n)e /M@ = o=iMOfp(M) + 2FM | h(M + n) cos nw}
a=M,F=0
Hi(w)=h(M)+23¥" | h(M + n) cos nw ‘ ‘

« N = 2M,h(n) = h(N — 1 — n) 1L

a=M—%,,B =0
Hi(w)=2X"  h(M +n—1)cos (n—%)a)



Four Types of Linear-Phase
FIR Filters (2)

a N =2M+1,h(n) = —h(N —1—n) il
(

a=M,[ =§

\Hl(w) =2YM_ h(M + n) sinnw 1,
111

s N=2M,h(n) = —h(N —1 —n) |

\

«=M-3B=3
Hi(w)=2¥"  h(M +n—1)sin (n —%) w



Fourier Series Design

H,;(w): desired response

periodic function with period 2n
U

expressed using DTFT
Hy(0) = 32 ha(m)e ™ hy(m)=— [ Hy(w)e/™ dw

2T VT
hgn): real © H;(—w)=H;(w)
H;(w):real ® hy(n) = hy(—n) (e.qg. ideal lowpass)
H,;(w): pure imaginary & hy(n) = —hy(—n)
(e.g. differentiator H;(w) = jw)



Mean Squared Error

H,(e/®) = Zzzznl h,(n)e /™ is designed

so that mean squared error

g% = %ffn |Hy(w) — H,(e’?)|? dw is minimized
Parseval’s equation

00

2= > Jha(m) = by ()

n=—oo

The solutionis hy(n) = h;(n) (n; <n <n,)

If H; (w) is a real even functionand n, = —-M,n, = M
H,(e’®) is also real and even

A causal filter is obtained as

h(n) = hy(n — M) e— H(e/®) = e~ /Mo, ()



Gibbs Phenomenon

sinnw,
Hy(e72)] ) =—
Hy(e’®) = ——10<n <10
——25<n<25
W¢ I

= Truncation of Fourier Coefficients

- .

= oscillation in frequency response
= sharp over- and under-shoot around discontinuous point

Gibbs Phenomenon

J.W.Gibbs, “Fourier Series”, Nature, 1899
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Window Design

Fourier coefficients are smoothly truncated using a window function w(n)

hy(n) = ha(W)w(n) — H, (eJ®) = % f an(¢)W(ej(w‘¢))d¢

—TT

-

1 |n|<M

Rectanqular window =
9 w(n) |0 otherwise

( T
Hann window w(n) = {0-> 1 0->¢cos (ﬁn) Inl <M
L0 otherwise
(0.54 + 0.46 (En) Inl <M
Hamming window w(n) = )0.54 + 0.46cos|-n) [n| =
0 otherwise
( —Z
: . IO<B\/1_(M) ) 1, is the zero-
Kaiser window w(n) = In| <M  order modified
Iy(B) Bessel function
\ 0 otherwise ©f the first kind

Square errors increases but
Ripple decreases, not optimum in any sense 9



Optimum Design

= maximally flat = Mini max

10



Maximally Flat Filters

Maximum possible vanishing derivatives of H(e/®) at w = 0 and &
Analytical solution available;

! — (N N 1 — ,=1\J /1 4 ,~1\N K-
i~ Y55
=0 i= i j—i

N filter order
K: the number of zeros at z = —1

d. group delay is%+ datw =0

JAVA applet available at
http./,/www.nh.cradle.titech.ac./p/old/maxifiat/
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http://www.nh.cradle.titech.ac.jp/old/maxflat/

Minimax Design

Chebyshev error
max|Hg(w) — Hy(e/*)| is minimized
w
for odd N and even symmetry, for example

H, (ej‘“)=h1 (0) + 23" . hy(n) cosnw = p(cos w)

p(x): M-th order polynomial in x
cosnw = T,,(cos w) Chebyshev polynomial

12



Chebyshev’s Theorem

For a continuous functiond(x) in—-1<x <1

1. There exist a unique function p(x) with the order at
most N such that
max |d(x) — p(x)| is minimized.
X

2. Afunctionis that p(x) if and only if
d(x;) —p(x;) = (=1, i =0,1,---,N + 1 (equiripple)

holds at N + 2 points, x; where

1< xy <xy << xypqg <1 .



Minimax Solution

Not analytically solved.
(it is easy if x;’s are known)

= Numerical solution

Remez exchange algorithm
= free software
= MATLAB
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Design of IIR Filters

N —i
i=0 AiZ

1+ X biz™
Use known theories for continuous filters

H(z) =

Mapping s — z
Certain index must be preserved

15



Impulse Invariance

Impulse response of a digital filter
= samples of IR of a model continuous-time filter

h(n) = Th(nT)

H(s): M-th order transfer function
 Numerator order < denominator order
* No multiple roots in denominator

N
ﬁ(S): ‘1 ' c2 ' Z
S—™P1 STP2 S_pN S — Di




Impulse Response

i'\l(t) = Cleplt + Czepzt 4 ...+ CNepNt, t>0
Is sampled at t = nT

h(n) = Tc,ePr™ + Tc,eP2™ + ... 4 TcyePNT
Its z~transform is

- Tc;
H(z) = 1 — epiTz-1
Frequer;c_;;/ response Is expressed as
H(e/%T) = Y5 (]a) + jk ) (because of sampling)
which includes aliases

The method is valid only when |H (j g) | Is small enough
17




s-Z Transform

H(e’?) = H(GQ(w))

No alias effect occurs if

—11 < w < m corresponds to entire —oo < () <
Mapping z = @(s) or

H(s) = H(p(s))

18



Conditions for the mapping

1. jQ axis corresponds to the unit circle: ¢(s) = e/

2. Inverse transform s = ¢~ 1(2) exists: H(z) = H(¢p1(2))
3. Stability preserved: Re(s) < 0 & |p(s)| < 1

4. DC response preserved: ¢(0) =1

Mapping which satisfies all the above
U
Bilinear Transform

19



Bilinear Transform

1+s
1—-=s

z=q(s) =
- z—1

z+1

substitution of z = e/% leads to
eJ®W_1

. . . w _ w
JQU(w) = o, = Jjtano = Q(w)= tan >

(z—1
H(Z)zH(Z+1>

S

http.//momiji.i.[shikawa-nct. ac.jp/dfdesign eng/iir/i_lpf.shim/ 70



http://momiji.i.ishikawa-nct.ac.jp/dfdesign_eng/iir/i_lpf.shtml

Other Design Method

= Eigen filter

= Time-domain design

= Linear Programming

= Semi definite Programming
= elC.
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Exercise 2

. If h(n) = h*(—n), what is the specific feature of its frequency
response H(e/®)?

. What is the advantage of linear phase property in digital
filters?

. ODbtain the filter coefficients using the program at
http.//www.nh.cradle.titech.ac.jp/old/maxflat/PlotMFnew.htm
with N = 10,K = 5,d = 0, and discuss about the results.

. In some textbooks the bilinear transformation is defined by

. 27z—1

T z+1’
which is different from the one in this lecture. Explain the

physical meaning of the difference.
. Read the following paper;

O. Hermann and W.Schuessler, Design of nonrecursive
digital filters with minimum phase, Electronics Letters, vol. 6,
Issue 11, pp.329-330, May 1970 22



http://www.nh.cradle.titech.ac.jp/old/maxflat/PlotMFnew.htm

