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networks and their representation

e a network (a graph) is a collection of vertices
(nodes) joined by edges (links).

Network Verto leage

Internet

World Wide Web

Citation network

Power grid

Friendship network
Metabolic network
Neural network

Food web

Computer or router

Web page

Article, patent, or
legal case

Generating station
or substation

Person
Metabolite
Neuron

Species

Cable or wireless
data connection

Hyperlink

Citation

Transmission line

Friendship
Metabolic reaction
Synapse

Predation



notations

n: the number of vertices in a network
m: the number of edges

[ multiedge L

multiedge, self-edge

multigraph: with multiedges

I self-edge l



edge list & adjacency matrix

edge list
n=6
(1,2),(1,5),(2,3),(2,4),(3,4),(3,5),(3,6)

adjacency matrix

ed e
P 1 if there is an edge between vertices i and j,

Aﬂ_ O otherwise.

01 001020
1 01 100
A:O 1 01 11
0 11000
1 01 0 0O
0O 01 0 0O



adjacency matrix

no self-edge -> diagonal elements are all zero

symmetric (for undirected networks)

multiedge: setting A;; equal to the multiplicity

self-edge: setting A;; equal to 2 (not 1)

o W oo +—»r O

O O DN DN B

0

P R PO N

o O o +— O

3

o O ok O

0

N O OB O

V-

[ multiedge

l self-edge I




weighted networks

* weights represent
— the amount of data flowing/bandwidth (Internet)

— total energy flow (food web)

— frequency of contact (social network)

0
A=|2
1

 weighted edge vs multiedge

2 1
0 0.5
05 0

1

2

1

2

0.5

3

— switching between the two can be useful for analysis

e weights can be negative
— animosity (social network)



directed network (digraph)

e each edge has a direction
— hyperlink from one page to another (WWW)

e adjacency matrix is asymmetric
{1 if there is an edge from jtoi,

O otherwise.

L 0 0 0 1

O rr PO O O

o O ok O O

o))
o O o+ O
R O OO O
o O oo B+
O rr OO O



cocitation and bibliograhic coupling

e adirected network -> an undirected one

— just ignoring the edge directions is easy, but it may
lose valuable information

— cocitation: # of vertices that have outgoing edges
pointing to both i and j

papers i & j are often co-cited
-> they are closely related




adjacency matrix of cocitation
e C (cocitation matrix)

— Cij : # of columns whose ith & jth elements are 1

[\

T
e () =P

k I

j
A" :transpose of A
C = AA'

C is symmetric because

CT=(AA") = AA" =C



more on citation matrix

e if all elementsin A are zero or one,

C. ZA”( ZAlk -> # of 1s in ith row
e we |gnore these diagonal elements

C_:<ZA1kAkJ Iij
0 =)

\



bibliographic coupling
e # of other vertices to which both point

l j i ] i & j often cite the same papers
o—@ -> they are closely related

e DLy

T T
A:I‘/ —1
* B (bibliographic coupling) R
By =2 AA = 2L AA i ] k
k=1 -1
K A i B=A"A
- QQ A B is symmetric
B:i O e lfi);>k -
i~ e o
R U ]
(n | o




cocitation & bibliographic coupling

e mathematically similar, but practically different

e cocitation
— is limited to influential papers

— may change over time as the papers receive new
citations

e bibliographic coupling

— is more uniform indicator of similarity than cocitation

e because the size of bibliography vary less than # of citations
paper receive

— can be computed as soon as a paper is published



Example with R

-
> a <- rbind(c(0,0,0,1,0,0), >c<-a%*%t(a) C — AA
+ c(0,0,1,0,0,0), —— : > diag(c) <-0 di el ts=0
+ c(1,0,0,0,1,0), | definition of matrix A | >¢ lagonal elements=
+ c(0,0,0,0,0,1), [,1]1 [,2] [,3] [,4] [,5] [,6]
+ ¢(0,0,0,1,0,1), [, 0 0 0 0 1 O
+ ¢(0,1,0,0,0,0)) 2] 0 0 0 0 0O 1&5 are cocited by 4
>3 3] 0 0 0 000 485 are cocited by 6
[,1]1 [,2] [,3] [,4] [,5] [,6] 4] 0 0 0 0 1 O
[, 0 0 0 1 0 O 5 1 0 0 1 0 O
2] 001 0 0 O [6 0 0 0 0 0 O
3] 1 000 10 > b <- t(a) %*% a B=A"A
4] O 0O 0 0 0 1 > diag(b) <- 0
[5] 0 0 0 101 >b diagonal elements=0
[6 0 1 0 0 0 O [,11 [,2] [,3]1 [,4] [,5] [.6]
1 [, 0 0 0 0 1 O
g% 8 8 8 8 8 8 1&5 cocite 3
4 [4] 0 0 0 0 O 1 4&6 cocite 5
3 56 1 0 0 0 0 O
[6 0 0 0 1 0 O
5 >



acyclic directed networks

e cycle : aclosed loop (including self-edge)

e acyclic network (DAG) : without loop

e acyclic directed network

— citation network : vertices are time-ordered

9
new

5

old

7

8

no upward edges -> no loop



“acyclic -> no upward edges”

<proof>

an acyclic network of n vertices
there must be at least one vertex that has no
outgoing edges

— a path across the network by following edges (at most
n-1 times) will encounter a vertex with no outgoing
edges

then put the vertex at the bottom of the picture
and remove the vertex and attached edges

repeat the above process



cyclic or acyclic?

1. Find a vertex with no outgoing edges

2. If no such vertex exists, the network is cyclic.
Otherwise, if such a vertex does exist,
remove it and all its ingoing edges from the
network.

3. If all vertices have been removed, the
network is acyclic. Otherwise, go back to step
1




adjacency matrix of DAG is triangular

e vertices are numbered in the order they are
removed in the previous algorithm
—an edgefromjtoionlyifj>i
— no self-edge -> diagonal elements are O

o O rO O O

o O PO kP OO O O




acyclic <-> eigenvalues are zero

¢ >
— acyclic -> order the vertices described previously
— adjacency matrix is strictly upper triangular
— eigenvalues (diagonal elements) are all zero

° <-
— prove contraposition

e “cyclic -> at least one nonzero eivenvalue”

— the total number Lr of cycles of length ris L, =) «/
* , :ith eigenvalue =
— cyclic -> Lr > 0 -> at least one «iis greater than zero



— families

— actorsin a film

Neworc Jvertes oo | Section_

Film actors
Coauthorship

Boards of directors
Social events
Recommender system
Keyword index

Rail connections

Metabolic reactions

hypergraphs

* links sometimes join more than two vertices

Actor
Author
Director
People
People
Keywords
Stations

Metabolites

hyperedges

1 2 3 4 5

vertices

Cast of a film

Authors of an article

Board of a company
Participants at social event
Those who like a book, film, etc.
Pages where words appear
Train routes

Participants in a reaction

3.5
3.5
3.5
3.1
4.3.2
4.3.3
2.4
5.1.1



bipartite networks

e two kinds of vertices

— original vertices and the groups to which they
belong

e edges run only between vertices of unlike

types # of groups # of vertices
* incidence matrixB (g xn) .

vertices

J
- groups 1001
a _<1 if vertex j belongs to group i, B_i 1 1 1 1
I () otherwise. _ 0110
) : 0011

 — O O




one-mode projection
e bipartite -> unipartite
* discards a lot of the information

o—20
movies B~ C~ D ﬂ ‘A.

7
1 2 3 4 5 6 7
%25
1 6
4



weighted projection

* projection onto (original) vertices
— By;B,; = 1<->iand j both belong to group k " vsrices

groups 1
Rz M
vertice B n 0

P= BB n X n matrix
— diagonal elements P ZB ZBk. 0
k=1

e # of groups to which vertex i belong

oSO b b O

e
, O K

¢ prOJECtIOn onto groups

P'=BB'™ gxg matrix

 — O O




trees

connected, undirected network without any
closed loop

forest : collection of trees
exactly one path between any pair of vertices

(# of vertices) = (# of edges) + 1




planar network

* a network that can be drawn on a plape
without having any edges cross A
e trees are planar

] .
o 4

-
— road network (without bridges) \g h’%’n‘%
— shared borders between countries %Eﬂ .

e four-color theorem




planar or not?

* Any network that contains a subset of vertices
in the form of K. or UG is not planar.

&80

. _ expansion of K-
* Any expansion of K. or UG is not planar.

e Kuratowski’s theorem

— Every non-planar network contains at least one
subgraph that is an expansion of K¢ or UG.



degree

k : the degree of vertexi k=2 A i
j=1
— # of edges connected to it 3

(sum of aII degrees) = 2 x (# of edges)

Zk -3 > A =2m

i=1l j=1

C : mean degree
1&,,  2m
niz_ll' n

maximum possible number of edges

n) 1
.C, :(Zj :En(n—l)

o

OO;

=

(o] —
3 = oOo|r|o
o




density

. m 2m C C
density (or connectance)” =7y~ m_p " n-1 " n
0<p<l1 (2) A~

networks is sufficiently large

dense: p—const as N — o
sparse: p—0 as N — o

almost all of the networks we consider are
sparse (except food webs)

— important for developing algorithms and models
k-regular : all vertices have degree k



degrees in directed networks

k out

+ in-degree k' =X2A e

* out- degree kUt = ZA\J ?:ZI _ 8\1)(1’ X
m = Zk'” kat ZAJ

. mean in- degree Ci, n 0

Cin :izkiin :izk?m :Cout

* mean out-degreec_, "= "=

oo
;7

-> we will just denote bothbyc  ¢-=



path

a route across the network that runs from vertex
to vertex along the edges of the network

self-avoiding path : a path that does not intersect
itself

length : # of edges traversed along the path

# of paths of a given length r

— AA; =1lifthereisa pathj->k->i

— # of paths of length 2 from jtoi: N;” = ZAlkAkj [AZ].,
— # of paths of lengthr fromjtoi: N(r) [ r]



cycles

e paths of length r that start and end at the
same vertex L, =Y [A"], =Tra" 1>2>3>1and

I 2->3->1->2 are distinct

. 1=1 .
— counting each loop only once is not easy

e L in terms of eigenvalues of A (undirected)

l diagonal matrix of eigenvalues ]
o

A = UKU' undirected graph -> A is symmetric
-> A is diagonalizable

orthogonal matrix of eigenvectors ]

A"=(UKUf =UK'U" ~UU =U"U=1
L, =Tr(UK'U")=Tr(U'UK") =TrK" = «{
~Tr(AB) =Tr(BA) K ith eigenvalue of A



cycles of directed graphs

o L =2xistrue also for directed graphs
— although A cannot be diagonalized

e proof
— Every real matrix can be writm
upper triangular matrix
e Schur decomposition T
A=0QTQ

orthogonal matrix

— Eigenvalues of T are the same as those of A

L, =TrA" =Tr(QT'Q") =Tr(Q'QT") =TrT" =) «/



geodesic path (shortest path)

e geodesic distance between vertices i and j
— smallest value of r such that [Ar]ij >0

* self-avoiding: no loop

e diameter : the longest geodesic path between
any pair of vertices in the network



Eulerian and Hamiltonian path

e Eulerian path
— a path that traverses each edge exactly onc

e Hamiltonian path

— a path that visit each vertex exactly once
— self-avoiding




Konigsberg bridge problem

 Does there exist any walking route that
crosses all seven bridges exactly once each?

it

v/
P

Aixh Q, *’E‘r
S i =i
VS

. e
_‘_-‘. ._,1.:_‘_-.
pady "

e > finding Eulerian péfﬁ on the right network
— at most two vertices with odd degree
— all four vertices have odd degree -> no solution



components

A
no path from A to B -> disconnected ;

subgroups in a network such that there exis
com ponent " at least one path from each member to each

other member O

block diagonal matrix
A=|0

components in directed networks
— two (undirected network)
— five (directed network)

)

S

non-zero elements




strongly connected components (SCC)

* Aand B are connected if and only if there
exists both A->B and B->A

e SCCis a maximal subset of vertices such that
there is a directed path in both directions
between every pair in the subset

e each vertex belongs to exactly one SCC

e every SCC with more than one vertex must
contain at least one cycle



out-component in a directed network

e 1
C

ne set of vertices that are reachable via
irected paths starting at a specific vertex A

¢ C

epends on network and starting vertex

out-component of vertex A out-component of vertex B

X
B X

Y .

Y



in-component & out-component
* in-component :reachable to vertex A

e out-component : reachable from vertex A
e SCC: intersection of in and out

. out-component The Web is a bow tie

in-component




independent paths

e edge-independent path share no edges

e vertex-independent path share no vertices
(except starting and ending vertices)

e vertex-independent -> edge-independent
— but the reverse is not true

2 edge-independent paths
1 vertex-independent path

AN/aN74



more on independent paths

 There can be only a finite number of

independent paths between any two vertices
in a finite network

e connectivity : # of independent paths
between a pair of vertices

— A and B have edge connectivity 2 but vertex
connectivity 1

— strength of connection C
e discovering communities
e finding bottlenecks



cut set

e a set of vertices whose removal will
disconnect a specified pair of vertices

— C forms a cut set of size 1 for A&B

e edge cut set

no path from Ato B
THE [tanother cut set

— a set of edges whose removal wi
specified pair of vertices

ISCOnnect d

* minimum cut set : the smallest cut set



Menger’s theorem
e |f thereis no cut set of size less than n

between a given pair of vertices, then there
are at least n independent paths between the
same vertices

— this theorem applies both to edges and to vertices

e The size of the minimum vertex cut set that
disconnects a given pair of vertices is equal to
the vertex connectivity of the samegvertices

min cut set independent paths
n -> n or more
n

N or more <-




maximum flow

pipe
te:

e a network of water pipes
e the max ratefrom AtoB =
(# of edge-independent pahts)*r *

e proof
— n independent paths -> at least n*r of flows (lower
bound)
— a cut set of n edges -> at most n*r of flows (upper
bound)

— the max rate is exactly n*r

e max-flow/min-cut theorem
— individual pipes can have different capacities



these three are numerically equal

* the edge connectivity of a pair of vertices
— the number of edge-independent paths

e the size of the minimum edge cut set

— the number of edges that must be removed to
disconnect them

e the maximum flow between the vertices

these are equal for directed network as well



max-flows on weighted networks

 max-flows/min-cut theorem can be extended
to weighted networks

— the maximum flow between a given pair of
vertices in a network is equal to the sum of the
weights on the edges of the minimum edge cut
set that separate the same two vertices

e proof

— transform weighted edges to multiedges

1

2

1

2

>y



diffusion process on networks

e spreading (ideas/diseases/...) on networks
* .:some commodity or substance at vertex i

* C(Y-y;) : flow from i to j (C:constant)
I degree of i

dWi_ B
F_C;Aij(Wj V) j%i

%:CZAJwJ _CWiZAij :CZAijl//j _CWiki

dt J J J
:CZ(Aij_5i'ki)l//j k, 0 O
J
; T oo o
d—"t”=C(A—D)w °=lo 0 K




graph Laplacian (1)

dy _ C(A-D)y
dt
' graph Laplaci dw+CLw—O
ra aplacian - -
O i
| = D _ A similar to diffusion equation

e graph Laplacian is for
— random walk
— resistor networks
— graph partitioning
— network connectivity



graph Laplacian (2)

L: :)—A edge
(k. ifi=j, k0 —;
0 ---

L. =<—1ifi#jandthereisanedge(ij), D=
0 otherwise

Lij = 5ijki - Aij

e | as linear combination of eigenvectors of L

dy
+CL 0
a VT

w(t) = Z a. (t)v,  Vj:eigenvectors of L LV; = 4V, (Teigenvectors ofa
- symmetric matrlx
2 are orthogonal

Z +CAa

E+C/1a =0 a/(t)=a(0)e ™



eigenvalues of graph Laplacian (1)

e Laplacian is symmetric, so it has real
eigenvalues. They are also non-negative.

* G=(V,E), [V[=n, |E]=m
. . . Each row of B has }
e edge incidence matrix one +1and one -1

(+1 if end 1 of edge i is attached to vertex j,
Bij =+—1 if end 2 of edge i is attached to vertex j,
o 0O otherwise
1] ¢

Z B B.—_1 - Theonlynon-zero terms will occur
i jk u when an edge connects i and j.

2Bi=k .y B =L :> L=-B"B




eigenvalues of the graph Laplacian (2)

e v.: eigenvector of L with eigenvalue A, Lvi=4v,
L=B'B

Ty T T T
v.B Bv.=v.Lv.=Av.v. =4

inner duct of a real
ﬂ“i = (ViTBT)(BVi) 4[ | veecth))rrothJ;nZ itasetlefa ]
A =20
e Laplacian always has at least one zero
eigenvalue.
1=(111..)
ZLij ><]-zyj(aij _Aij): Ki _ZAij =k —k; =0
j j ! 1 is always an eigenvector of the ]
L-1=0 graph Laplacian with eigenvalue zero

0= ﬂ’l < 2’2 < 2/3 < < ﬂ’n ! Laplacian has no inverse because its ]

determinant is always zero. It is singular.




components and connectivity

suppose we have a network that is divided into c components

e Laplacian -> block dlagona! placanof )
hc row sum =0
& _0 -1 -2

[ N, ones

V=] = is an eigenvector of L with eigenvalue zero

__ zeros Lv =0v
. —at least c eigenvectors with eigenvalue zero

 (# of zero eigenvalues) = (# of components)
->the second eigenvalue of graph Laplacian 4,
is non-zero if and only if the network is connected




random walk

e a path across a network created by taking
repeated random steps

— used for sampling and ranking
* pi(t): probability that the walk is at vertex i at
timet p (- Z Up(t—1)

[ vector with g J
element p. j i

p(t) = AD‘lp(t -1)

[ degree:k;
1/k, 0 0 - Jk o o -
D—l _ O 1/ k2 O D1/2 _ O kz O
0 0 1/k, - 0o 0 Jk -




reduced adjacency matrix

[ symmetric ]\

p(t) — AD_lP(t _1) D—1/2AD_1/2 _ {1/ kikj Aij =1

D—1/2p (t) = [D—1/2AD—1/2: [D—llzp(t =N 0 otherwise
° When t > o0 y — This matrix is called ]

Repeated multiplication of reduced adjacency matrix
-1 this symmetric matrix
p=AD"p )

I-AD Dp=(D-A)D'p=LD 'p=0
->D1p is an eigenvector of the
Laplacian with eigenvalue O

e connected network ->only one eigenvector (with

eigenvalue 0) whose components are all equal
D p=al p- =ak, -> probability is proportional
_K to the degree of the vertex

P= aPnormallze rzjkj 2m




random walk with absorbing state(1)

first passage time:# of steps from u first reaches v

p,(t) : probability that a walk is at v at time t

p, (1) p,(t-1) : prob. that a walk has /\/\ E}

first passage time exactly t
mean first passage time v:abW

o it[Pv(t)— 0. (t-1)] (never go out from v)

\Y

t=0
trick for calculating p,(t) is in the next slides



random walk with absorbing state(2)

A, =0 " vis absorbing state
A, =0 Alsasymmetric

A,, =0 and the terms with J=v

J j J(zV) TN
p'(t)=A'D"p'(t-1) — | M=AD"]
p’(t):p with vth element removed

A’,D’": A and Dwith vth row and column removed

P' (t) — [AAIDI_1 ]tp' (O) &hese are symmetric ]
p,()=1-> p(t)=1-1"p'(t) 1=(1L..)

i (V)

r=YMp, ()~ p,-D]= YU [Pt -D-p'®] =17~ A'D" 'p'(0)

it(Mt‘l -M") =[I-M]"




random walk with absorbing state(3)

I . A|D|—1 ]—1 — DI[DI_Al]—l — DlLl—l
I=DD"'

L' : graph Laplacian with the vth row and
column removed (vth reduced Laplacian)

[AB]'=B*A™

r=1'"[I-A'D']'p'(0)=1-D'L'"p'(0)
e |’ can have inverse “-1=(11...1) is not an eigenvalue of !

e AV): equal to "1 with a vth row and column
reintroduced

(v) _
Aij =

0 ifi=vorj=v
[L™], ifi<vandj<v
L], ifi>vandj<v
L], ifi<vandj>v

[L 7]y, ifi>vandj>v

\

A(V)

Vv

(—

Ll—l




random walk with absorbing state(4)

a walk starting at vertex u
at time O

r=1-D'L'"p'(0)
p'(0)=(00....10....,0)

ST= Z k. AL

e calculate I (vth reduced Laplacian)

e the sum over the elements in the uth column
= the first passage time fromutov

e sums over the other columns=)the first
passage time from other starting vertices to v



resistor networks(1) . .

connhection between
— random walks on networks and
— calculation of current flows in networks of resistors

edges: identical resistors of resistance R
vertices: junctions between resistors

apply a voltage between s and t such that a
current | flows from sto t

What is the current flow through any given
resistor?




resistor networks(2)

e Kirchhoff’s current law: electricity is conserved

* V.: the voltage at vertex i
e |.:currentinjected into vertex i | ® i
| (+1 foriss, @( LV

. =<—1 fori=t,

0 otherwise.

ZAJ +| =0
k,V, Z AV =RI; "Zinj:ki
Z(Ijl Alj)/'_Rll

. LV =RI L=D—-A graph Laplacian



resistor networks(3)

the Laplacian has no inverse = we cannot
simply invert LV =RI to get V

this is because we can add any multiple of
vector 1=(111..) L(V+cl)=LV+L1=LV =RI

If we fix reference potential at a particular
value, then the eq_Lhyé\t\ion for V will become

the voltage at this

solvable Q0int is zero

—> the voltage at V., is set to zero



resistor networks(4)

* remove the element V=0 from Vin LV =RI
along with the corresponding column tinL
= LV =RI
e |": tth reduced Laplacian
V' =RLT

V. = RIAW A :inverse of the tth reduced Laplacian with the
I IS
tth row and column reintroduced having
elements all zero



graph Laplacian with R+igraph

74 Graph plot 1

Close Select Layout View Export

®

> library(igraph)
> g0 <- graph(c(0,1,1,2,2,0,2,3,3,4,4,5,5,3), directed=FALSE)

e

©

> tkplot(g0) ®
> get.adjacency(g0) ﬁ H .
1101 (a1 L1 e L_@diacency matrix
1] 01 1000 ®
2] 101000 |
3 110100 @
4] 00 10 11
5] 00010 1 “
6] 000110 . _®
> (gl<-graph.laplacian(g0)) -
[111,2] 131 141 5] [6] i graph Laplacian
] 2-1-1 000
2] -1 2-1 000
3]-1-13-100
4] 0 0 -1 3 -1 -1
5] 0 0 0-12-1
6] 0 0 0 -1 -1 2! . :
[>e]igen(gl) e|genvalues / elgenvectors
Svalues
[1] 01

(6]

4.561553e+00 3.000000e+00 3.000000e+00 3.000000e+00 4.38447
.985906e-17
=|‘ no.clusters(g0) >1
Svectors

(1] (21 [31 L4  [51 [6]
[1,] 0.1845241 0.000000e+00 0.0000000-0.7637626 0.4647051 -0/40824
[2,] 0.1£45241 4.196338e-17 -0.5345225 0.5455447 0.4647051 -(.408248
[3,1-0571923 -4.196338e-17 0.5345225 0.2182179 0.2609565/£0.408244
-4.196338e-17 0.5345225 0.2182179 -0.260956§ -0.408248
-7.071068e-01-0.2672612 -0.1091089 -0.4647061 -0.40824
7.071068e-01-0.2672612 -0.1091089 -0.4647p51 -0.408248

74 Graph plot 3 L5 S
Close Select Layout View Export
®
> g2 <-graph(c(0,1,1,2,2,0,3,4,4,5,5,3), directed=FALSE) @
> tkplot(g2)
[1]13
> get.adjacency(g2)
L1121 L3141 [,5][.6] ® @
[1,J 01 1 0 0O
21 1 01 000
3 110000
41 0 000 11
5 0 00 10 1 @

@

[6] 0 001 10
> (g2l<-graph.laplacian(g2))
L1121 L3141 [,5][.6]

no bridge between

J

[3,] 2 -1 -2J0 0 O

o2 _1‘0 00 components
[3] -1 -1 2§40 0 O

4] 0 0 O0f2 -1 -1 .

51 0 0okt 21 :i block diagonal
[6,] 0 0 OfF1 -1 2

> eigen(g2l)

Svalues

[1] 3,0 QO 3.000000e+00 3.000000e+00 3.000000e+00

:i no.clusters(g2) -2

(31 [4]  [5]  [6]

Svectors

[1]

(2]

[4,] 0.0000000 0.8164966 0.0000000 0.0000000 -0.5773503 0.000000
[5,]1-0.7071068 -0.4082483 0.0000000 0.0000000 -0.5773503 0.000§000
[6,] 0.7071068 -0.4082483 0.0000000 0.0000000 -0.5773503 0.000p000

(# of zero eigenvalues) = 1

[2.2 + 0 —> network is connected ]

(# of zero eigenvalues) = 2




Example: spectral partition

R+igraph

> sign(eigen(gl)Svectors|,length(eigen(gl)Svalues)-1])

> library(igraph)
> g0 <- graph(c(0,1,1,2,2,0,2,3,3,4,4,5,5,3), directed=FALSE)
> tkplot(g0)

> get.adjacency(g0)

L1021 (31141151 L6] ﬁ adjacency matrix

[ 01 1 0 0O
[2] 1 01 00O
3 110100
4] 0 01 011
[51 0 00101
[l 000110

> gl<-graph.laplacian(g0)
L1121 L3141 [,5][,6]

ﬁ graph Laplacian

1]111-1-1-1

ng—with

s of the eigenvector
corresponding to the

second smallest eigenvalue

> (sign(eigen(gl)Svectors[,length(eigen(gl)Svalues)-1])+1)/2

[1,] 2-1-1 000

21 -1 2-1 0 00O

3] -1-13-100

4] 0 0-1 3 -1-1

[5F 0 0 0 -1 2 -1

[ 0 0 0 -1 -1 2 . .
>eigen(g.)g eigenvalues / eigenvectors
Svalues

[1] 4.561553e+00 3.000000e+00 3.000000e+00 3.000000e+06
[6] -7.985906e-17

svectors second smallest

(1] (21 [31 L4  [51 [6]
[1,] 0.1845241 0.000000e+00 0.0000000-0.7637626/0.4647031 -0.4082483
[2,] 0.1845241 4.196338e-17 -0.5345225 0.5455447/0.4647051\-0.4082483
[3,]1-0.6571923 -4.196338e-17 0.5345225 0.218217¢ 0.2609565}0.4082483
[4,] 0.6571923 -4.196338e-17 0.5345225 0.218217% -0.2609565 }0.4082483
[5,]1-0.1845241-7.071068e-01 -0.2672612 -0.109108p -0.464705%-0.4082483
[6,]1-0.1845241 7.071068e-01-0.2672612 -0.1091089-0.464705] -0.4082483

4.384472e-0

[1]111000

> V(g0)Scolor <- (sign(eigen(gl)Svectors[,length(eigen(gl)Svalues)-1])+1)/2

> tkplot(g0)
74 Graph plot 1 { o 74 Graph plot 2 ‘ N |. =NE=n X
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