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For the solution of the elliptic equation, we can
consider the steady state of the parabolic equation.
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We can change the matrix A to a diagonal one
by means of the eigen value . and the eigen

vector X_(m=1, N) .

X AX - A
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where X ={X,,X,,--, X} Is the eigen matrix and

A=diag(X,, Ay, Ay ) Is the diagonal matrix

composed of the eigen value.

By Linear Algebra
Error Analysis

Multiplying X to the both sides,
180 X XA X
ct
= AX p— X5
We have =Ap—(J

where @=X", G=Xp
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The given parabolic equation is decomposed to
N-independent equations in the eigen-vector system.

Each component is written by
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The solution for the original variable ¢ is

—
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B The second term is the solution of the Poisson
equation. The first term is the temporal change
of the parabolic equation.

B When the decay of the first term is fast, the solution
reaches the steady state rapidly.
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The first term expresses the error of the numerical
solution for the Poisson equation.

The eigen values and the corresponding eigen vectors:
A, =—2-+2cos(Ax-mn)
X, =sin( jAx-m)

In the case of N =7, A, =-015244
A, =—058579

A, =—384776
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B The solutions are expressed by the summation
of the wave determined by the mesh size.

m All the eigen value are negative. For the larger
wave number, the solution decreases faster.

small wave number » slow converging




MULTI-GRID Method E

By preparing different coarse grids, the
iteration process moves from a fine grid to a
coarse grid. We try to decrease the error as
fast as possible.

In a coarse grid, the wave number is thought
to be large, and the correction for the error
can be distributed to the long-distance grid.

lteration Method %
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e |nitial several iterations can decrease the
residual error rapidly, but the convergence is
not effective after that.

* The error is effectively decreased when the
wave number is comparable to the grid size.

* It requires many iterations to decrease the
error of long wave length.
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MG Process %
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o Approximate solution is obtained by a
conventional iterative method.

e Correction value to decrease the error Is
estimated on the coarse grid.

* Nesting of different coarse grid iteration.

The frequency components of the
error Is decreased effectively by using
the suitable coarse grid.
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Application to Poisson Eq.%
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e Hierarchy coarse grid G* : the superscript
k indicates the fineness of the gird.

» The grid distance of G*is Ax“and Ax* = 2Ax*™
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(1) Discretization of Poisson to be
solved on the grid G*

Lka :Sk

L* : Operator on the grid k
Fk: Exact Solution

gk : Source term (const.)

Starting from a proper initial value f,, the
approximation value f is obtained by n-th
iteration of SOR method

fX = SOR(L*,s¥, ff,n)
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Residual : R* =S¥ —[*f*

Correction: v¢ = F* — f
Equation for correction value :
R¥=S* —Lf}
— LEX L flk _ Lk(Fk _ flk)

s Lv* = RX

The correction value is obtained by the above equation
on the coarse grid in order to decrease the components of
the long wavelength.
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Restriction interpolation to the coarse grid G**!

k+1 k+lpk
RK = | IR

Solving the correction on the coarse grid

Lk+1Vk+1 _ R k+1

The correction on the fine grid G* is obtained by
the prolongation interpolation.

k k k+1
Ve = Ik+1V
Correcting the approximation by using the above

correction value. )

K K
f, =1 +v
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SOR operation again:

fX = SOR(L*,S¥, £,,n,)

Repeating

2 —Grid Cycle
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2-grid Cycle  \/

3-grid Cycle \/ W W
4-grid Cycle v W
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