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By Linear Algebra

Error Analysis

For the solution of the elliptic equation, we can 
consider the steady state of the parabolic equation.

Discretized form:
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We can change the matrix A to a diagonal one
by means of the eigen value          and the eigen
vector                         .

where                                   is the eigen matrix and

is the diagonal matrix 

composed of the eigen value.
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Multiplying          to the both sides,

where
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The given parabolic equation is decomposed to 
N-independent equations in the eigen-vector system.
Each component is written by
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The solution for the original variable  is
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■ The second term is the solution of the Poisson
equation. The first term is the temporal change
of the parabolic equation.

■ When the decay of the first term is fast, the solution
reaches the steady state rapidly.
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The first term expresses the error of the numerical
solution for the Poisson equation.

The eigen values and the corresponding eigen vectors:

  mxm cos22

  mxjX mj sin,

1 015244 .

2 058579 .


7 384776 .

In the case of N = 7,
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■ The solutions are expressed by the summation
of the wave determined by the mesh size.

■ All the eigen value are negative. For the larger
wave number, the solution decreases faster.

small wave number slow converging
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MULTI-GRID  Method

By preparing different coarse grids, the 
iteration process moves from a fine grid to a 
coarse grid. We try to decrease the error as 
fast as possible.

In a coarse grid, the wave number is thought 
to be large, and the correction for the error 
can be distributed to the long-distance grid.
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Iteration Method

• Initial several iterations can decrease the
residual error rapidly, but the convergence is
not effective after that.

• The error is effectively decreased when the 
wave number is comparable to the grid size.

• It requires many iterations to decrease the
error of long wave length.
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MG Process
• Approximate solution is obtained by a 

conventional iterative method.

• Correction value to decrease the error is 
estimated on the coarse grid.

• Nesting of different coarse grid iteration.

The frequency components of the 
error is decreased effectively by using 
the suitable coarse grid.
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• Hierarchy coarse grid         : the superscript 
k indicates the fineness of the gird.

• The grid distance of is       and 

Application to Poisson Eq.
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： Operator on the grid k
： Exact Solution

： Source term (const.)

kL
kF

kS

（１）Discretization of Poisson to be      
solved on the grid kG

kkk SFL 

Starting from a proper initial value      ,  the 
approximation value          is obtained by n-th 
iteration of SOR method
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 nfSLSORf kkkk ,,, 01 

14

Residual ： kkkk fLSR 1

Correction： kkk fFv 1
Equation for correction value :
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The correction value is obtained by the above equation 
on the coarse grid in order to decrease the components of 
the long wavelength.
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Restriction interpolation to the coarse grid 1kG

Solving the correction on the coarse grid

The correction on the fine grid is obtained by 
the prolongation interpolation.

Correcting the approximation by using the above 
correction value.
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 223 ,,, nfSLSORf kkkk 

SOR operation again:

Repeating

２－Grid Cycle
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2-grid Cycle

3-grid Cycle

4-grid Cycle


