Advanced Data Analysis: Blind Source Separation

Masashi Sugiyama (Computer Science)

W8E-406, sugi@cs.titech.ac.jp

http://sugiyama-www.cs.titech.ac.jp/~sugi

Blind Source Separation

Cocktail-party problem:

We want to separate mixed signals into original ones.

Demonstration

	Mixed signal	Separated signal 1	Separated signal 2
Conversation	400	A **	~
+ Conversation		•	
Conversation			
+			
Instrument			

From http://www.brain.kyutech.ac.jp/~shiro/research/blindsep.html

Formulation

■ Source signals:

- Speaker 1: $s_1^{(1)}, s_2^{(1)}, \dots, s_n^{(1)}$ WWWWWWW
- Speaker 2: $s_1^{(2)}, s_2^{(2)}, \dots, s_n^{(2)}$

Mixed signals:

$$x_i^{(1)} = m_{11}s_i^{(1)} + m_{12}s_i^{(2)}$$
$$x_i^{(2)} = m_{21}s_i^{(1)} + m_{22}s_i^{(2)}$$

Formulation (cont.)

In matrix form:

$$oldsymbol{x}_i = oldsymbol{M} oldsymbol{s}_i$$

$$m{x}_i = \left(egin{array}{c} x_i^{(1)} \ x_i^{(2)} \end{array}
ight) m{M} = \left(egin{array}{c} m_{11} & m_{12} \ m_{21} & m_{22} \end{array}
ight) m{s}_i = \left(egin{array}{c} s_i^{(1)} \ s_i^{(2)} \end{array}
ight)$$

More generally

• $\boldsymbol{x}_i, \boldsymbol{s}_i$: d -dimensional vectors

• M: d -dimensional matrix.

Problem

$$oldsymbol{x}_i = oldsymbol{M} oldsymbol{s}_i$$

- We want to estimate $\{s_i\}_{i=1}^n$ from $\{x_i\}_{i=1}^n$.
- Approach: Estimate M, and use its inverse for obtaining $\{\widehat{s}_i\}_{i=1}^n$.

$$\widehat{m{s}}_i = \widehat{m{M}}^{-1} m{x}_i$$

- ■In BSS, the followings may not be important:
 - Permutation of separated signals
 - Scaling of separated signals
- Therefore, we estimate $\widehat{\boldsymbol{M}}^{-1}$ up to permutation and scaling of rows.

Assumptions

 $\{s_i\}_{i=1}^n$ are i.i.d. random variables with mean zero and covariance identity:

$$\frac{1}{n}\sum_{i=1}^n s_i = \mathbf{0}$$

$$\frac{1}{n}\sum_{i=1}^n s_i s_i^\top = \mathbf{I}_d$$

$$\{s^{(j)}\}_{j=1}^d \text{ are mutually independent:}$$

$$P(s^{(1)}, s^{(2)}, \dots, s^{(d)}) = P(s^{(1)})P(s^{(2)}) \cdots P(s^{(d)})$$

- $\{s^{(j)}\}_{j=1}^d$ are non-Gaussian.
- M is invertible.
- BSS under source independence is called independent component analysis.

Example

Source signals (uniform)

Mixed signals

Data Sphering

Sphering (or pre-whitening):

$$oldsymbol{\widetilde{x}}_i = oldsymbol{C}^{-rac{1}{2}}oldsymbol{x}_i \qquad oldsymbol{C} = rac{1}{n}\sum_{i'=1}^n oldsymbol{x}_{i'}oldsymbol{x}_{i'}^ op$$

Then

$$oldsymbol{\widetilde{x}}_i = \widetilde{oldsymbol{M}} oldsymbol{s}_i \qquad \widetilde{oldsymbol{M}} = oldsymbol{C}^{-rac{1}{2}} oldsymbol{M}$$

Now we want to estimate \widetilde{M} from $\{\widetilde{\boldsymbol{x}}_i\}_{i=1}^n$, and obtain $\{\widehat{\boldsymbol{s}}_i\}_{i=1}^n$ by

$$oldsymbol{\widehat{s}}_i = oldsymbol{W} oldsymbol{\widetilde{x}}_i \qquad oldsymbol{W} = oldsymbol{\widetilde{M}}^{-1}$$

Example

Source signals (uniform)

Mixed signals

$$m{M} = \left(egin{array}{ccc} 1 & 3 \\ 5 & 1 \end{array}
ight)$$

Sphered signals

$$\widetilde{m{x}}_i = m{C}^{-rac{1}{2}}m{x}_i$$

Orthogonal Matrix

 \mathbf{M} is an orthogonal matrix since

$$\widetilde{m{C}} = rac{1}{n} \sum_{i=1}^n \widetilde{m{x}}_i \widetilde{m{x}}_i^ op = m{I}_d$$

$$oldsymbol{\widetilde{C}} = \widetilde{oldsymbol{M}} \left(rac{1}{n} \sum_{i=1}^n oldsymbol{s}_i oldsymbol{s}_i^ op
ight) \widetilde{oldsymbol{M}}^ op = \widetilde{oldsymbol{M}} \widetilde{oldsymbol{M}}^ op$$

Therefore,

$$\widehat{m{s}}_i = m{W}\widetilde{m{x}}$$

$$oldsymbol{W} = \widetilde{oldsymbol{M}}^{-1} = \widetilde{oldsymbol{M}}^{ op} \equiv (oldsymbol{w}^{(1)} | oldsymbol{w}^{(2)} | \cdots | oldsymbol{w}^{(d)})^{ op}$$

 $\{\boldsymbol{w}^{(j)}\}_{j=1}^d$: Orthonormal basis

$$\widehat{s}_i^{(j)} = \langle oldsymbol{w}^{(j)}, \widetilde{oldsymbol{x}}_i
angle$$

Non-Gaussian Is Independent²⁴⁷

- Now we want to find an ONB $\{w^{(j)}\}_{j=1}^d$ such that $\{\widehat{s}^{(j)}\}_{j=1}^d$ are independent.
- Central limit theorem: Sum of independent variables tends to be Gaussian.
- Conversely, non-Gaussian variables are independent.
- We find non-Gaussian directions in $\{\widetilde{\boldsymbol{x}}_i\}_{i=1}^n$.

Example (cont.)

Non-Gaussian direction is independent.

ICA by Projection Pursuit

- Finding non-Gaussian directions can be achieved by projection pursuit algorithms!
 - Center and sphere the data.
 - Find non-Gaussian directions by PP.
- We may use an approximate Newtonbased PP method, which is called FastICA.

Example 2

Example 2 (cont.)

Source

Separated

Original signals are recovered up to permutation and scaling.

Notification of Final Assignment

Data Analysis: Apply dimensionality reduction or clustering techniques to your own data set and "mine" something interesting!

- Deadline: July 31st (Wed) 17:00
 - Bring your printed report to W8E-406.
 - E-mail submission is also possible (though not recommended).

Mini-Conference on Data Analysis

- Program
- Presentation:
 - 7 mins (+ 2 mins for Q&A)
 - Description of your data
 - Methods to be used
 - Outcome
- Slides should be in English.

July 16th	July 23rd	
Ikko Yamane	Yisha Sun	
Tomoya Sakai	Tran Hai Dang	
Kiung Park	Hao Zhang	
Janya Sainui	Biriukova Nataliia	
Zhuolin Liang	Fumito Nakamura	
Sagong Sun	Juuti Mika	
Kishan Wimalawarne	Vektor Dewanto	
Daniel Louw	Luis Cardona	
Duong Nguyen	Song Yang	
Voot Tangkaratt	Mengxi Lin	

Schedule

- July 9th: Preparation for Mini-Conference
- July 16th: Mini-Conference Day 1
- July 23rd: Mini-Conference Day 2