Advanced Data Analysis: K-Means Clustering

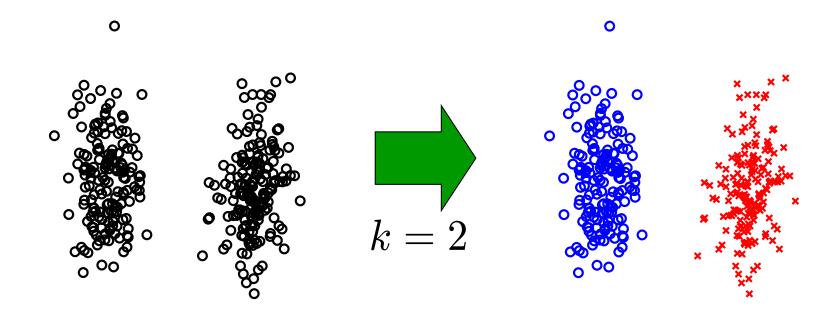
Masashi Sugiyama (Computer Science)

W8E-406, sugi@cs.titech.ac.jp

http://sugiyama-www.cs.titech.ac.jp/~sugi

Data Clustering

- We want to divide data samples $\{x_i\}_{i=1}^n$ into k $(1 \le k \le n)$ disjoint clusters so that samples in the same cluster are similar.
- We assume that k is prefixed.



Within-Cluster Scatter Criterion 35

- Idea: Cluster the samples so that withincluster scatter is minimized
- \mathcal{C}_i : Set of samples in cluster i

$$\bigcup_{i=1}^k \mathcal{C}_i = \{\boldsymbol{x}_j\}_{j=1}^n \qquad \mathcal{C}_i \cap \mathcal{C}_j = \phi$$

$$\mathcal{C}_i \cap \mathcal{C}_j = \phi$$

Criterion:

$$\min_{\left\{\mathcal{C}_i
ight\}_{i=1}^k} \left[\sum_{i=1}^k \sum_{oldsymbol{x} \in \mathcal{C}_i} \|oldsymbol{x} - oldsymbol{\mu}_i\|^2
ight]$$

$$oldsymbol{\mu}_i = rac{1}{|\mathcal{C}_i|} \sum_{oldsymbol{x}' \in \mathcal{C}_i} oldsymbol{x}'$$

Within-Cluster Scatter Minimization

$$\min_{\left\{\mathcal{C}_i
ight\}_{i=1}^k} \left[\sum_{i=1}^k \sum_{oldsymbol{x} \in \mathcal{C}_i} \|oldsymbol{x} - oldsymbol{\mu}_i\|^2
ight]$$

- When all possible cluster assignment is tested in a greedy manner, computation time is proportional to k^n .
- Actually, the above optimization problem is NP-hard, i.e., we do not yet have a polynomial-time algorithm.

K-Means Clustering Algorithm¹³⁷

- Randomly initialize cluster centroids: $\{\mu_i\}_{i=1}^k$
- Repeat the following steps until convergence:
 - Update cluster assignments: $j = 1, 2, \dots, n$

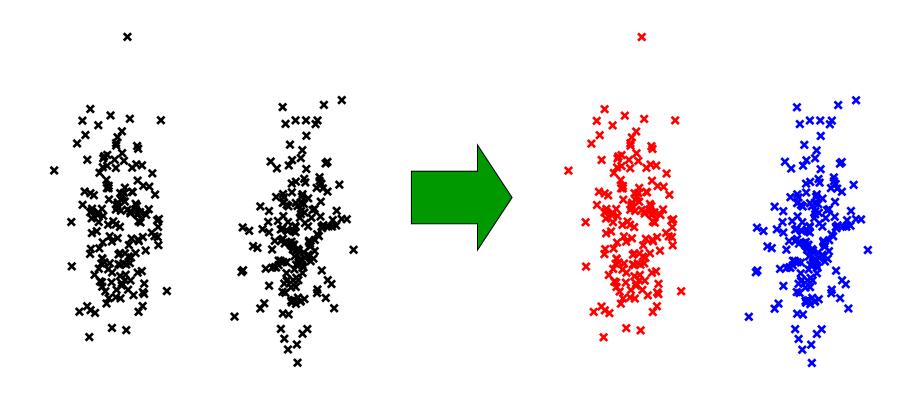
$$m{x}_j
ightarrow \mathcal{C}_{t_j} \hspace{0.5cm} t_j = \operatorname*{argmin}_i \| m{x}_j - m{\mu}_i \|^2$$

• Update cluster centroids: i = 1, 2, ..., k

$$oldsymbol{\mu}_i = rac{1}{|\mathcal{C}_i|} \sum_{oldsymbol{x}' \in \mathcal{C}_i} oldsymbol{x}'$$

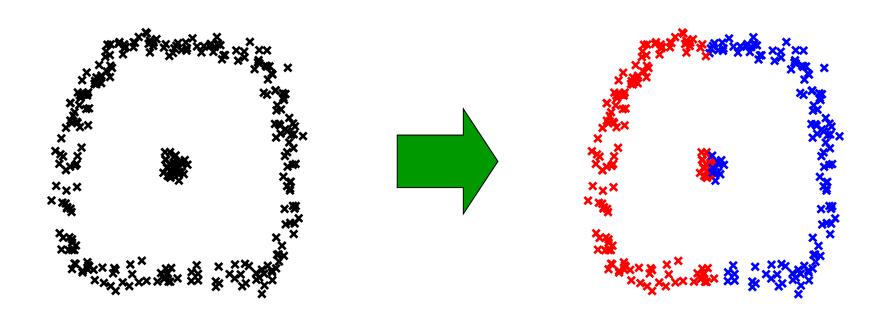
Note: Only local optimality is guaranteed

Examples



K-means method can successfully separate the two data crowds from each other.

Examples (cont.)



However, it does not work well if the data crowds have non-convex shapes.

Non-Linearizing K-Means

Map the original data to a feature space by a non-linear transformation:

$$\phi: \boldsymbol{x} o \boldsymbol{f}$$
 $\{\boldsymbol{f}_i \mid \boldsymbol{f}_i = \phi(\boldsymbol{x}_i)\}_{i=1}^n$

Run the k-means algorithm in the feature space.

$$\min_{\left\{\mathcal{C}_i\right\}_{i=1}^k} \left[\sum_{i=1}^k \sum_{\boldsymbol{x} \in \mathcal{C}_i} \|\phi(\boldsymbol{x}) - \boldsymbol{\mu}_i\|^2 \right]$$

$$oldsymbol{\mu}_i = rac{1}{|\mathcal{C}_i|} \sum_{oldsymbol{x}' \in \mathcal{C}_i} \phi(oldsymbol{x}')$$

Kernel K-Means Algorithm

- Randomly initialize cluster partition: $\{C_j\}_{j=1}^k$
- Update cluster assignments until convergence:

$$\boldsymbol{x}_j \to \mathcal{C}_{t_j}$$
 $j = 1, 2, \dots, n$

$$t_j = \operatorname*{argmin} \left[-rac{2}{|\mathcal{C}_i|} \sum_{oldsymbol{x}' \in \mathcal{C}_i} K(oldsymbol{x}_j, oldsymbol{x}') + rac{1}{|\mathcal{C}_i|^2} \sum_{oldsymbol{x}', oldsymbol{x}'' \in \mathcal{C}_i} K(oldsymbol{x}', oldsymbol{x}'')
ight]$$

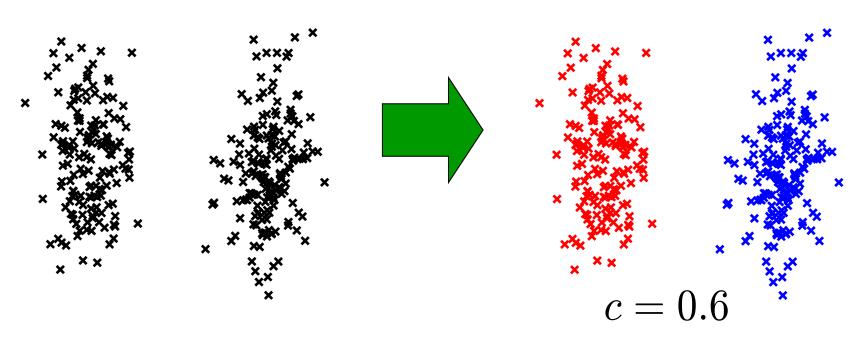
$$\|\phi(\boldsymbol{x}) - \boldsymbol{\mu}_i\|^2 = \langle \phi(\boldsymbol{x}), \phi(\boldsymbol{x}) \rangle - 2\langle \phi(\boldsymbol{x}), \boldsymbol{\mu}_i \rangle + \langle \boldsymbol{\mu}_i, \boldsymbol{\mu}_i \rangle$$

$$= K(\boldsymbol{x}, \boldsymbol{x}) - \frac{2}{|\mathcal{C}_i|} \sum_{\boldsymbol{x}' \in \mathcal{C}_i} K(\boldsymbol{x}, \boldsymbol{x}') + \frac{1}{|\mathcal{C}_i|^2} \sum_{\boldsymbol{x}', \boldsymbol{x}'' \in \mathcal{C}_i} K(\boldsymbol{x}', \boldsymbol{x}'')$$

constant

Examples of Kernel K-Means 142

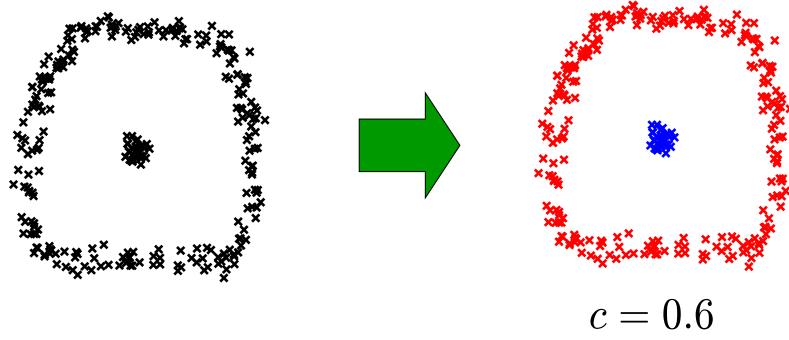
$$K(\boldsymbol{x}, \boldsymbol{x}') = \exp\left(-\|\boldsymbol{x} - \boldsymbol{x}'\|^2/c^2\right)$$



Kernel k-means method can separate the two data crowds successfully.

Examples of Kernel K-Means (coff.)

$$K(\boldsymbol{x}, \boldsymbol{x}') = \exp\left(-\|\boldsymbol{x} - \boldsymbol{x}'\|^2/c^2\right)$$



It also works well for data with nonconvex shapes.

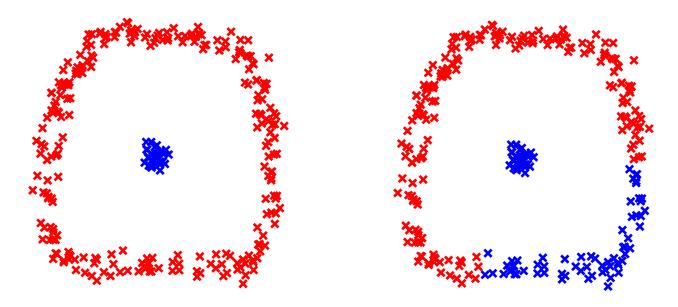
Examples of Kernel K-Means (cont.)

$$K(oldsymbol{x},oldsymbol{x}') = \exp\left(-\|oldsymbol{x}-oldsymbol{x}'\|^2/c^2
ight)$$
 $c=0.6$
 $c=0.3$

- Choice of kernels (type and parameter) depends on the result.
- Appropriately choosing kernels is not easy in practice.

Examples of Kernel K-Means (coff.)

$$K(\boldsymbol{x}, \boldsymbol{x}') = \exp\left(-\|\boldsymbol{x} - \boldsymbol{x}'\|^2/c^2\right)$$



Solution depends crucially on the initial cluster assignments since clustering is carried out in a high-dimensional feature space.

Weighted Scatter Criterion

We assign a positive weight d(x) for each sample x:

$$\min_{\{\mathcal{C}_i\}_{i=1}^k} \left[J_{WS}
ight]$$

$$J_{WS} = \sum_{i=1}^{k} \sum_{\boldsymbol{x} \in C_i} d(\boldsymbol{x}) \|\phi(\boldsymbol{x}) - \boldsymbol{\mu}_i\|^2$$

$$\boldsymbol{\mu}_i = \frac{1}{s_i} \sum_{\boldsymbol{x}' \in \mathcal{C}_i} d(\boldsymbol{x}') \phi(\boldsymbol{x}')$$

$$s_i = \sum_{\boldsymbol{x} \in \mathcal{C}_i} d(\boldsymbol{x})$$

Exercise

Prove that

$$\underset{i}{\operatorname{argmin}} \left[d(\boldsymbol{x}) \| \phi(\boldsymbol{x}) - \boldsymbol{\mu}_i \|^2 \right]$$

$$\boldsymbol{\mu}_i = \frac{1}{s_i} \sum_{\boldsymbol{x}' \in \mathcal{C}_i} d(\boldsymbol{x}') \phi(\boldsymbol{x}')$$

is equivalent to

$$\underset{i}{\operatorname{argmin}} \left[-\frac{2}{s_i} \sum_{\boldsymbol{x}' \in \mathcal{C}_i} d(\boldsymbol{x}') K(\boldsymbol{x}_j, \boldsymbol{x}') \right]$$

$$+ \frac{1}{s_i^2} \sum_{\boldsymbol{x}', \boldsymbol{x}'' \in \mathcal{C}_i} d(\boldsymbol{x}') d(\boldsymbol{x}'') K(\boldsymbol{x}', \boldsymbol{x}'')$$

Proof

$$\begin{aligned} d(\boldsymbol{x}) \| \phi(\boldsymbol{x}) - \boldsymbol{\mu}_i \|^2 \\ &= d(\boldsymbol{x}) \Big(\langle \phi(\boldsymbol{x}), \phi(\boldsymbol{x}) \rangle - 2 \langle \phi(\boldsymbol{x}), \boldsymbol{\mu}_i \rangle + \langle \boldsymbol{\mu}_i, \boldsymbol{\mu}_i \rangle \Big) \\ &= d(\boldsymbol{x}) \left(K(\boldsymbol{x}, \boldsymbol{x}) - \frac{2}{s_i} \sum_{\boldsymbol{x}' \in \mathcal{C}_i} d(\boldsymbol{x}') K(\boldsymbol{x}, \boldsymbol{x}') \right) \\ &+ \frac{1}{s_i^2} \sum_{\boldsymbol{x}', \boldsymbol{x}'' \in \mathcal{C}_i} d(\boldsymbol{x}') d(\boldsymbol{x}'') K(\boldsymbol{x}', \boldsymbol{x}'') \Big) \\ &\text{independent of } \boldsymbol{i} \end{aligned}$$

Weighted Kernel K-Means

- Randomly initialize cluster partition: $\{C_i\}_{i=1}^k$
- Update cluster assignments until convergence:

$$oldsymbol{x}_j o \mathcal{C}_t$$

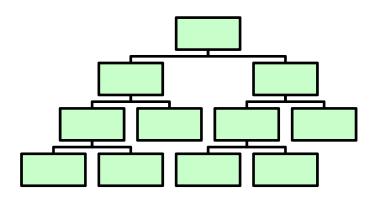
$$t = \underset{i}{\operatorname{argmin}} \left[-\frac{2}{s_i} \sum_{\boldsymbol{x}' \in \mathcal{C}_i} d(\boldsymbol{x}') K(\boldsymbol{x}_j, \boldsymbol{x}') \right]$$

$$+ \frac{1}{s_i^2} \sum_{\boldsymbol{x}', \boldsymbol{x}'' \in \mathcal{C}_i} d(\boldsymbol{x}') d(\boldsymbol{x}'') K(\boldsymbol{x}', \boldsymbol{x}'')$$

$$s_i = \sum_{m{x} \in \mathcal{C}_i} d(m{x})$$

Hierarchical Clustering

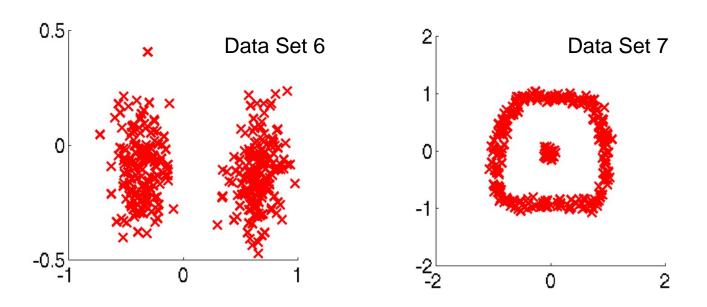
- Hierarchical cluster structure can be obtained recursively clustering the data.
- We may fix k=2.



Homework

Implement linear/kernel k-means algorithms and reproduce the 2-dimensional examples shown in the class.

http://sugiyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis



Test the algorithms with your own (artificial or real) data and analyze their characteristics.