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Data Clustering 134

We want to divide data samples {x;};
into % (1 < k < n) disjoint clusters so that
samples in the same cluster are similar.

We assume that k Is prefixed.




Within-Cluster Scatter Criteriori=°

|ldea: Cluster the samples so that within-
cluster scatter is minimized
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Within-Cluster Scatter Minimizatioh
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When all possible cluster assignment Is
tested in a greedy manner, computation
time Is proportional to k™.

Actually, the above optimization problem is
NP-hard, I.e., we do not yet have a
polynomial-time algorithm.



K-Means Clustering Algorithm*3’

Randomly initialize cluster centroids: {p,}"_,

Repeat the following steps until convergence:
e Update cluster assignments: j =1,2,...,n

xj — Cy;  t; = argmin |[x; — |’
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e Update cluster centroids: =1,2,...,k
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Note: Only local optimality is guaranteed



Examples 138

K-means method can successfully separate
the two data crowds from each other.



Examples (cont.) 139
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However, it does not work well if the
data crowds have non-convex shapes.



Non-Linearizing K-Means 14

Map the original data to a feature space
by a non-linear transformation:

p:x— f {Fil fi=o(@i) i,
Run the k-means algorithm in the

feature space.
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Kernel K-Means Algorithm 141

Randomly initialize cluster partition: {C;}¥_,
Update cluster assignments until convergence:
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Examples of Kernel K-Means#
%/c)

c=006 °
Kernel k-means method can separate
the two data crowds successfully.



Examples of Kernel K-Means (cotit)

K(z,z') =exp (—||z — a:’Hz/cQ)

It also works well for data with non-
convex shapes.



Examples of Kernel K-Means (cotft')

K(z,') = exp (~||z — @'||2/c?)

é é&i“!m %x ﬁgﬁmgg

&"% - ’k"%

¥ow® g ¥o® 3

x % x R

5 =06 a =03 3
Shoe 5 ot Rkl B

Choice of kernels (type and parameter)
depends on the result.

Appropriately choosing kernels is not
easy In practice.



Examples of Kernel K-Means (cotft)

K(z,z') =exp (—||z — a3’|\2/02)
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Solution depends crucially on the initial
cluster assignments since clustering is carried
out in a high-dimensional feature space.



Weighted Scatter Criterion 4°

We assign a positive weight d(x) for each
sample x:




Exercise 147
Prove that
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Independent of ;



Weighted Kernel K-Means 14°

Randomly initialize cluster partition: {C;}%_,
Update cluster assignments until convergence:
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Hierarchical Clustering  *°

Hierarchical cluster structure can be
obtained recursively clustering the data.

We may fix k=2.




Homework

151

Implement linear/kernel k-means algorithms
and reproduce the 2-dimensional examples

shown In the class.
http://suglyama-www.cs.titech.ac.|p/~sugi/data/DataAnalysis
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Test the algorithms with your own (artificial or
real) data and analyze their characteristics.



