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Curse of Dimensionality 3
{azz- ?’:1, r; © Rd, d>1

If your data samples are high-dimensional,
they are often too complex to directly analyze.

Usual geometric intuitions are often only
applicable to low-dimensional spaces;
such intuitions could be even misleading In
high-dimensional spaces.



Curse of Dimensionality (cont.) *

When the dimensionality increases,
e \Volume of unit hyper-cube V., Is always 1.
¢ VVolume of inscribed hyper-sphere 1/, goes to O.

Relative size of hyper-sphere gets small!

Vs
— — 0
Ve




Curse of Dimensionality (cont.) °

Grid sampling requires an exponentially
large number.
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Unless you have an exponentially large
number of samples, your high-dimensional
samples are never dense.



Dimensionality Reduction

We want to reduce the dimensionality of
the data while preserving the intrinsic
“Information” in the data.

Dimensionality reduction iIs also called
embedding; If the dimension is reduced up
to 3, it Is also called data visualization.

Basic assumption (or belief) behind
dimensionality reduction: your high-
dimensional data is redundant in some
sense.



Notation: Linear Embedding

Data samples:

{wi ?:1, €r; < Rd, d>1
Embedding matrix:

BeR™4 1<m<«d
Embedded data samples:

{z;}" , z; =Bx; € R™

m{ziz B




Principal Component Analysis (PCA)

ldea: We want to get rid of a redundant
dimension of the data samples

(0)(51)- (-01)

This could be achieved by minimizing the
distance between embedded samples and

original samples.




Data Centering )

We center the data samples by

n
. 1
r, =&, — — E il)j
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J=1

In matrix, =1
X =XH
X = (z1]@2| - [®0)
X = (z1|za| -+ |xp) I,,: n-dimensional identity matrix

1 1,+n: n X n matrix with all ones
H = In — Elan



Orthogonal P

rojection 10

{b; (¢ R*)}™, : Orthonormal basis in
m -dimensional embedding subspace

<b7;,bj> — 57;73' — <

1 (i =3j)

In matrix, BB' = 1T

m

0 (2 #J)

\

B = (bi|ba| - |by) "

Orthogonal projection of z; Is expressed by

m

Z<ij§i>bj (:

j=1
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PCA Criterion 11

Minimize the sum of squared distances.

N |BT Bz, — | (: _tr(BCB") + tr(E))

1=1

cC=Nzz =XX
PCA criterion: =
Bpca = argmaxtr(BCB')
BcRmxd Y e o
subject to BB' =1, T i T Z
/! o g/BTBEZ




PCA: Summary 12
A PCA solution:

Bpca = (Y1]hs] - [b,,) "

{\;, v, }2 | :Sorted eigenvalues and
normalized eigenvectors of Cap = \ip

AL > A2 > 2> \g (Y, %) = 0;
PCA embedding of a sample x :

1
z = BPCA(ZE — —X]_n)
n

1,,: n-dimensional vector with all ones



| Proof 13
Lagrangian:

L(B,A)=tr(BCB'") —tr(BB' —I,,)A)
A:Lagrange multipliers (symmetric)
Stationary point (necessary condition):

og—é—ZBC—ZAB—O
o7 »C’BT BTA(1)
8A—BBT I

—>BBT I, (2)

Eigendecomposition: T - orthogonal matrix

A = TTT' (3) T : diagonal matrix
T'=T"



Proof (cont.) 14

(1)&(3) mmp CB' = B'TTT' (4)

=) CB'T-B'IT

mm) CF-Fr (5 F=B'T
(5) Is an eigensystem

) R(F) = span({¢,, }7,) (6)
I' = diag()\kl,)\k2,. .. )\km) (7)
ki€ {1,2,...,d}
R(F)=R(B'T)=R(B") (8)

(6) & (8) wmp R(B') = span({s; }7,) (9)



Proof (cont.) 1o
(2) =P rank(B) =m
mm) all {k;}™, are distinct

We should choose the best {k;}!~, that
maximizes tr(BCB') .

(4) & (7) = tr(BCB')

tr(BB'TT'T ")
(TTT ")
r(IT ' T)

A1 > Ay 2 > Ag
# ky = i glves a solutlon

(9) = B = (¢, |,|---|%,,) (Q.E.D)
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Correlation
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Correlation coefficient for {s;,;};
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PCA Uncorrelates Data

Bpca = (Y|,

Covariance matrix of t
embedded samples is

n

1

n -
1=1

mm) Each elementin z

o)

ne PCA-
diagonal.

—) zz! =diag(\i, e, .. )

(Homework)

IS uncorrelated!
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Examples

Data Is well described.

PCA Is intuitive, easy to implement,
analytic solution available, and fast.
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Examples (cont.) 19

Iris data (4d->2d) Letter data (16d->2d)

O Setosa
Virginica
X Verisicolour

Embedded samples seem informative.



Examples (cont.) 20

However, PCA does not
necessarily preserve interesting
Information such as clusters.



Homework 21

Implement PCA and reproduce the 2-
dimensional examples shown in the class.

e Data sets 1 and 2 are avallable from
http://suglyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis

Data Set 1

Data Set 2
1.5 e

e Test PCA on your own (artificial or real) data
and analyze the characteristics of PCA.



= Homework (cont.) 22
e

eB: mxd,(1<m<d)
e C. D :dxd,positive definite, symmetric

o {)\,L-7 zpi}y;l_ : Sor?ed generalized eigenvalues
and normalized eigenvectors of Cvp = AD

Al 2 Ay 2> > Mg (D, 1,;) = 0;
Prove that a solution of

B.,.;», = argmin {tr(BCBT)}
BERde
L. subject to BDB' =1,,
IS given by

Bin = (wd"‘pd 1‘ "(:bd—m—l—l)—r



Homework (cont.) 23

Prove that PCA uncorrelates the samples;
more specifically, prove that the covariance
matrix of the PCA-embedded samples is
the following diagonal matrix:

Zzz = diag (A1, A2, ..., Am)

= Bpcax;

Bpca = (Yi|hs] - [b,,) "



Suggestion 24

Read the following article for upcoming classes:

e X. He & P. Niyogi: Locality preserving projections,
In Advances in Neural Information Processing
Systems 16, MIT Press, Cambridge, MA, 2004.

http://books.nips.cc/papers/files/nips16/NIPS2003  AA20.pdf



