
スーパーコンピュータ TSUBAME 2.0利用ガイダンス

GSICのガイダンス資料を抜粋・改変

TSUBAMEの歴史

2006 **TSUBAME 1.0** 85TFlops/1.1PB

アジアNo.1 「みんなのスパコン」 x86 CPU+アクセラレータ 2007
TSUBAME 1.1
100TFlops/1.6PB
ストレージ・アクセラレータ

2008 **TSUBAME 1.2**160TFlops/1.6PB

GPUアクセラレータ 680枚増強

2010/11/01

TSUBAME 2.0

2.4PFlops/11PB

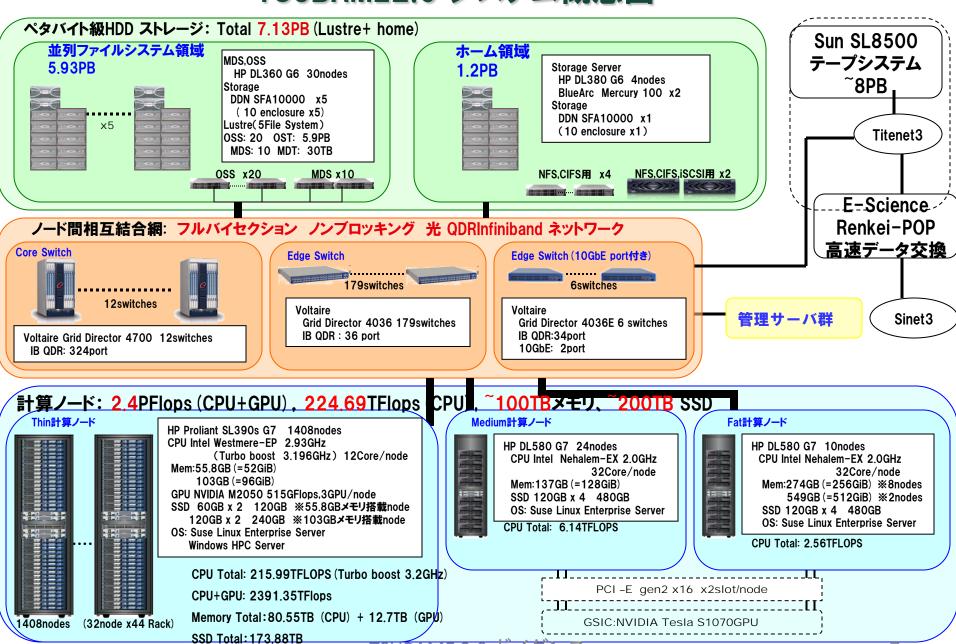
日本初のペタコン、TSUBAME1.0の30倍の性能

• TSUBAME初の完全リプレース

増強

TSUBAME2.0の特徴(1)

- 理論値2.4PFlopsのばく大な演算性能
 - CPU合計性能: 220TFlops •••4.4倍 (TSUBAME1.2比)
 - GPU合計性能: 2.18PFlops • 20倍
- 合計容量7.1PByteの巨大ストレージ
 - T1.2の4.5倍の容量
- バイセクションバンド幅200Tb/sの高速光ネット ワーク


TSUBAME2.0の特徴(2)

- ソフトウェア資産の継続性と新規運用
 - 既存のMPI, OpenMP, CUDAなどで記述されたプログラムの利用
 - GPU向けにOpenACCも利用可能
 - 既存ISVアプリの大部分の利用
 - SUSE Linux Enterprise 11
 - 新たにWindows HPC Serverの運用 (今回は説明対象 外)
- GPU対応アプリも採用、ぜひ使ってください
 - CPUよりも計算が短時間で済む⇒課金も少なくてすむ
 - 現在はAMBER/Maple、今後も続々対応予定

ハードウェア構成

TSUBAME 2.0 システム概念図

計算ノード (1)

- Thinノード, Mediumノード, Fatノードの三種類
- Thinノード: 1408台 [一番良く使われる計算ノード]
 - HP Proliant SL390s G7
 - CPU: Intel Xeon 2.93GHz 6コア×2=12コア
 - Hyperthreadingのために24コアに見える
 - GPU: NVIDIA Tesla M2050 3GPU
 - Memory: 54GB (一部は96GB)
 - SSD: 120GB (一部は240GB)
 - ネットワーク: QDR InfiniBand x 2 = 80Gbps

計算ノード(2)

• Medium/Fatノード:M24台 + F10台

[大容量メモリが必要なジョブ向け]

- HP Proliant DL580 G7
- CPU: Intel Xeon 2.0GHz 8コア×4 = 32コア
 - Hyperthreadingのために64コアに見える
- Memory: 128GB (Medium), 256/512GB(Fat)
- SSD: 480GB
- ネットワーク: QDR InfiniBand x 1 = 40Gbps
- GPUとして、TSUBAME 1.2で使っていたTesla S1070を利用 可能

TSUBAME2.0のストレージ

- ホームディレクトリ用
 - NFS, CIFS, iSCSI
 - BlueArc Mercury 100 (一部GridScaler)
 - DDN SFA 10K × 1, SATA × 600 disks

- Lustre (/work0)
 - MDS: HP DL360 G6 × 6
 - OSS: HP DL360 G6 × 20
 - DDN SFA 10K × 3, 2TB SATA × 3550 disks, 600GB SAS × 50 disks
- 他. アーカイブ向きの/data0

実際の利用について

- 利用開始までの流れ
- 課金とTSUBAMEグループについて

TSUBAME2.0の利用開始

- 利用申請(必須)
 - 東工大ポータルにログインして、メニューからTSUBAME利用ポータルにシングルサインオン(SSO)で申請

東工大ポータル: http://portal.titech.ac.jp

- メールで仮パスワード発行、TSUBAME利用ポータルで本パスワードを設定して利用開始
- ペーパーレスで即日利用が可能
- TSUBAME2.0へのログイン
 - 従来通りにSSHによるログイン
 - 学外からは鍵認証のみでログイン可能とし、セキュリティを強化

TSUBAME利用ポータル

- 以下のサービスが利用可能なwebページ
 - アカウント新規利用申請、利用者情報の変更、利用停止 (利用者自身)
 - TSUBAMEグループの作成、管理
 - 予算の追加、登録(予算管理者のみ)
 - Hキューの予約(グループ参加者)
 - 有償サービス利用履歴閲覧(利用者ごと、管理者)
 - 課金請求データの閲覧(予算管理者のみ)
- 入り方(1): 東工大ポータルから
- 入り方(2): http://tsubame.gsic.titech.ac.jp/ からTSUBAME portalリンク、TSUBAMEアカウントでログイン

TSUBAME2上で利用できるサービス

- 無償サービス
 - インタラクティブ、デバッグ専用ノードの利用
 - 小規模の計算試験(2ノード10分間まで)
 - 個人用ストレージサービス(home領域、 全学ストレージ、学内ホスティング)
- 有償サービス
 - 研究目的の大規模計算(従量制、定額制)
 - Work領域, Data領域(グループ利用、月額制)
 - 追加ISVアプリケーション利用(予定)

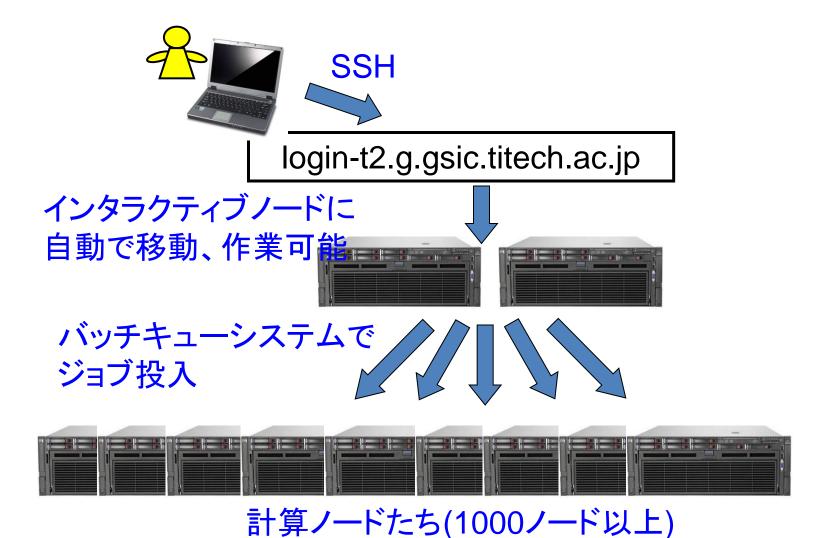
有償サービス

- 研究室、研究プロジェクト単位でグループ作成 (TSUBAMEグループ)
- TSUBAMEポイントによるプリペイド従量制
 - 1ポイントで従来の1ノード・時間を利用できるポイント制
 - 従来:1口=25000円/2880ノード・時間
 - 1口=5000円/600ポイント(時間単価はほぼ変わらず、 性能は大幅に向上)
- 定額制の仮想ノード計算サービス
- グループ共有の大規模work領域サービス

ソフトウェア構成と使い方

- システムソフトウェア・ストレージ
- バッチキューの構成と使い方
- アプリケーション

System Software


	TSUBAME 2.0
Linux OS	SUSE Linux Enterprise Server 11 SP1
Windows OS	Windows HPC Server 2008 R2
Job Scheduler for Linux	PBS Professional
Job Scheduler for Windows	Windows HPC Server

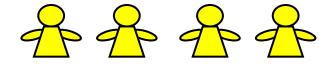
Compilers & Libraries

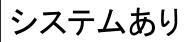
	TSUBAME 2.0
Compiler	Intel Compiler 11.1.072 PGI CDK 12.8 gcc 4.3.4
MPI	OpenMPI 1.4.2 MVAPICH2 1.5.1
CUDA	4.1

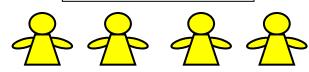
- コンパイラの切り替えは環境変数の設定で可能
 - 利用の手引をご参照ください
- CUDA C/FortranによるGPUプログラミング可能
 - CUDA+MPIの場合はコンパイラの組み合わせについてご相談を
- バージョンアップの可能性あり

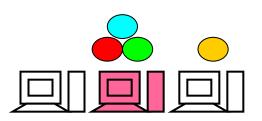
TSUBAME2へのログイン(1)

TSUBAME2へのログイン(2)

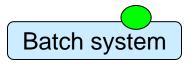

- Linuxなどからの場合
 - ssh [アカウント名]@login-t2.g.gsic.titech.ac.jp
- Windowsの端末ソフトからの場合(putty, ttsshなど)
 - ホスト名:login-t2.g.gsic.titech.ac.jp
 - プロトコル:SSH
 - ポート: 22
- ユーザ名(アカウント名)・パスワードを正しく入力
- → 様々なメッセージの後に以下のように表示されればログイン 成功


10B12345@t2a006163:>


バッチキューシステムとは


- TSUBAME2ではPBSProというバッチキューシステムでジョブ(プログラム)を投入
- 多数のプログラムの「交通整理」
 - OSはノード内、バッチキューシステムはノード間の管理

システムなし



ユーザが自分でノード決定 混雑すると実行が遅くなる

システムが自動決定 ジョブ開始が待たされることあり

主要キュー一覧

- インタラクティブノード
 - i:インタラクティブ専用ノード
 - t:Tesla(GPU)デバッグ専用ノード
- バッチキュー
 - [S] ノード占有系: 12CPUコア、3GPUのノード利用
 - [H]予約系: Thinノードをノード数、期間を予約して利用
 - [V] 仮想マシン共有系: 8CPUコア(16hyperthread) の仮想ノード利用
 - [G] GPU系: 4CPUコア、3GPUのノード利用
- グランドチャレンジ(超大規模並列)制度
 - 数千~万の超大規模並列計算のための利用(要審査、年に 2回)

ノード占有系:Sキュー・Lキュー

- Sキュー: 12CPUコア, 3GPU, 54GBメモリを持つノードを利用
 - 従来のSLAキューに相当
 - 多数CPUまたはGPUによる並列性や、I/O(ディスク・通信) 性能が必要なジョブ向け
 - ノード内のジョブ混在は起こらない
 - 従量制課金
- 大容量メモリが必要なジョブには、S96, L128, L256,
 L512キュー
 - 数字はメモリ容量(GB)
 - Sに比べ1.5倍、2倍...の課金
 - L系はMeduim/Fatノード。CPUコア数が多く、GPUが古い

予約系:Hキュー

- 予約した期間ノードを占有して利用
 - 従来のHPCキューに相当
 - 1000CPUコアレベルの並列性が必要なジョブ向け
 - Webから日程・ノード数を予約
 - バッチキューを介さない利用も可
 - 従来よりも、柔軟な予約が可能
 - ノード数は16以上自由、期間は一日単位で最大7日

仮想マシン内共有系: Vキュー

- ノードあたり8CPUコアを利用
 - 従来のBESキューに近い
 - 逐次ジョブや比較的小規模なジョブ向け
 - KVM仮想マシン技術により、以下のようなノードに見える
 - 8CPUコア (hyperthreadingで16コアに見える)
 - 32GBメモリ
 - TSUBAME 1.2ノード相当、GPUは無し
 - ノード内にジョブは混在しうる (BESキューのように)
 - I/O速度は他キューより下がるので注意
 - 定額制課金

GPU系: Gキュー

- ノードあたり3GPU+4CPUコアを利用
 - GPUジョブに適している
 - 以下のようなノードに見える
 - 4CPUコア
 - 3GPU
 - 22GBメモリ
 - Vキュージョブと仮想マシン技術によりノードを共有
 - 従量制課金、Sに比べ0.5倍 (お買い得)
 - 定期的にGSICがGPU講習会開催 (ほぼ毎回満員 御礼)

主要サービス比較

S ノード占有系 S96, L128など	従量	300台	並列度・I/O速度重視 演算性能2倍,メモリバンド幅3倍 (T1.2比)を占有 GPUジョブもOK
V 仮想マシン内共有 系	定額	440台(Linux) 40台(Windows)	比較的小規模ジョブ向け T1.2に近い性能、ただしI/Oはやや 弱め
H 予約系	従量	420台	大規模並列向け 1日単位1ノード単位で予約が可能 に
G GPU系	従量	480台 (Vと共有)	GPUジョブ向け GPU+MPIもOK
グランド チャレンジ		700~1300台	超大規模ジョブ向け 審査制、年数回予定

※ 各キューへの配分ノード数は今後の利用状況に応じて調整します

バッチキューの使い方 t2subコマンドの基本

- PBS Proというバッチキューシステムを用いて計算ノードにジョブ投入しま す
- myprogというプログラムを、Sキューで実行する場合
- (1) 同じディレクトリにスクリプトファイルを作っておく(たとえばjob.shというファイル) ⇒ chmod 755 job.sh などにより「実行可能」の必要

```
#!/bin/sh
cd $PBS_O_WORKDIR
./myprog
```

job.shファイル

(2) t2subコ<u>マンドで投入</u>

t2sub -W group_list=xxx -q S ./job.sh

- -q xxx: キュー名を指定
- -W group_list=xxx: TSUBAMEグループ番号を指定

バッチキューの使い方 MPI並列ジョブの場合

(1)myprogがMPIプログラムとする。スクリプトは以下のように: job.shファイル

```
#!/bin/sh
cd $PBS_O_WORKDIR
mpirun -n 並列数 -hostfile $PBS_NODEFILE ./myprog
```

(2) t2subコマンドで投入

```
t2sub –q S –W group_list=xxx –l select=10:mpiprocs=12 ¥ -l place=scatter ./job.sh
```

• この場合、ノードあたり12並列×10ノード = 120並列で実行

バッチキューの使い方 SMP並列(スレッド,OpenMP)ジョブ

(1) myprogがプログラムとする。スクリプトは以下:

```
#!/bin/sh
cd $PBS_O_WORKDIR
./myprog
```

job.shファイル

(2) t2subコマンドで投入

```
t2sub -W group_list=xxx -l select=1:ncpus=8 -q S ./job.sh
```

• この場合、1ノード内で、8並列で実行

T2subのその他のオプション

- -l walltime=10:00:00
- ジョブの最大実行時間。省略すると1時間
- -l mem=40gb
- ジョブが利用するメモリサイズ(ノードあたり)。 省略すると1GB
- -o /xxx/yyy.txt
- 標準出力の出力先ファイル名
- -e /xxx/yyy.txt
- 標準エラー出力の出力先ファイル名
- 詳細はweb上の「利用の手引」をご参照ください

バッチキュー関係コマンド

• t2stat

ジョブの状態を確認。通常は自ジョブのみ

例) t2stat -all: 他ユーザのジョブも表示

例) t2stat V: 指定したキュー(V)の情報のみ表示

t2del

ジョブの終了を待たずに削除

例) t2del 147.t2zpbs03

ユーザが利用可能なストレージ構成

Home領域

- 用途
 - 計算ノードのホームディレクト リ(NFS)
 - (学内ストレージサービス (CIFS))
 - (学内ホスティングサービス (iSCSI))
- 利用方法
 - 1ユーザあたり25GBまで無料
 - ~ユーザ名/でアクセス可能

Work領域

- 用途
 - 大規模データ格納
 - Linux計算ノードからアクセス 可能 (Lustre)
 - グループ単位で利用可能
- 利用方法
 - TSUBAMEグループ単位で要申請。TB×月で課金
 - /work1, /work0

テープライブラリと連携した階層型ファイルシステム(GPFSによる/data0)もあり

Work領域の利用方法

- [グループ管理者] TSUBAMEグループを登録、ディスクオプションを有効に ⇒ /work1または/work0以下にグループ名のディレクトリが生成
- [各ユーザ] 生成されたディレクトリ内に自分の作業 ディレクトリを作成する

例:/work1/t2g-group-name/USER01, USER02,

利用上の注意

- インタラクティブノードでは長時間CPUを独占するプロセスを走らせないでください(数分が目安)
 - エディタ、コンパイラ、可視化ツール等はok
- 大量にディスクI/Oを行う場合は/homeではなく/work1,/work0を利用してください
- アカウントの貸し借り禁止

TSUBAME2の情報入手

TSUBAME2.0 WWWサイト

http://tsubame.gsic.titech.ac.jp/

特に大事なのは、メニュー⇒利用について⇒各種利用の手引き⇒TSUBAME2.0利用の手引き

「Current Status」で、今の混雑具合やシステム利用電力を 閲覧

TSUBAME2についての問い合わせ先

soudan@o.cc.titech.ac.jp

数人のGSIC/NECメンバーが数千人のユーザからの質問を 受け付けています. FAQも一度読んでから!