
2013年度 実践的並列コンピューティング 第1回

授業の概要と TSUBAMEスパコンガイダンス

遠藤 敏夫

endo@is.titech.ac.jp

2013年4月7日

- 並列計算・高性能計算技術を実践的に学ぶ
 - 講義十実習
 - この場で実際に東工大TSUBAME2スーパーコンピュータを使います
- 予定内容
 - HPCのためのライブラリや言語
 - OpenMP
 - MPI
 - CUDA (GPUのためのプログラミング)
 - (予定) Hadoop (Map-Reduceプログラミング)

お知らせがあるときは下記webページにて

http://www.el.gsic.titech.ac.jp/~endo/

- 本講義ではC言語をベースに
 - ポインタの概念、malloc/free
 - Pthread, Javaスレッドは知っていると良いが必須ではない
- 基礎的なLinuxコマンド
 - コンパイル、makeコマンド

半年の流れと単位認定

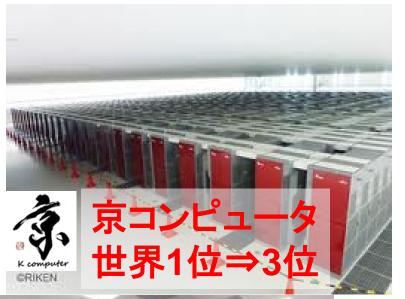
基礎編(4~5月)

- OpenMP: 共有メモリ並列プログラミング
- MPI: 分散メモリ並列プログラミング

応用編(6月~8月)

- GPUプログラミング
- Map-Reduceプログラミング(予定)
- 応用アルゴリズム(予定)

下記により採点・単位認定


- ●基礎編の課題(2 or 3問)から一つ選択しレポート提出 (必須)
 - ▶ 締めきりは6月ごろ。二つ以上提出も可
- ●応用編の課題(2 or 3問)から一つ選択しレポート提出 (必須)
 - 締めきりは8月上旬ごろ。二つ以上提出も可
- ●出席点

スーパーコンピュータとは

色々なスーパーコンピュータ

スパコンは何に使われる?

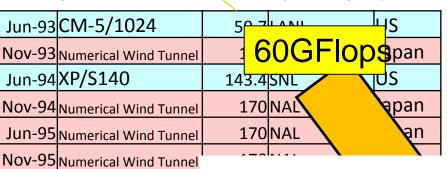
スパコンはあらゆる科学分野の仮想実験場

普通のコンピュータとの違い

- スパコンは、普通のコンピュータよりもずっと計算速度 が速いコンピュータ
 - 速度の単位はFlops: 一秒間に加・減・乗を何回できるか

● 倍精度浮動小数(double)の演算速度がポピュラ<u>ー</u>

1980年のパソコン



現代の携帯電話

スパコン開発競争の激化―世界ースパコンの変遷

Linpack演算速度 (Gflops)

Jun-03	Earth-Simulator	35860	ES Center	Japan
Nov-03	Earth-Simulator	35860	ES Center	Japan
Jun-04	Earth-Simulator	35860	ES Center	Japan
Nov-04	BlueGene/L beta	70720	IBM/DOE	US
Jun-05	BlueGene/L	136800	DOE/NNSA/	LLNL US
	DI C /I	200000	DOE/NNSA/	LLNL US

lus

lus

US

lus

lUS

DOE/NNSA/LLNL

DOE/NNSA/LLNL

DOE/NNSA/LLNL

DOE/NNSA/LLNL

DOE/NNSA/LANL

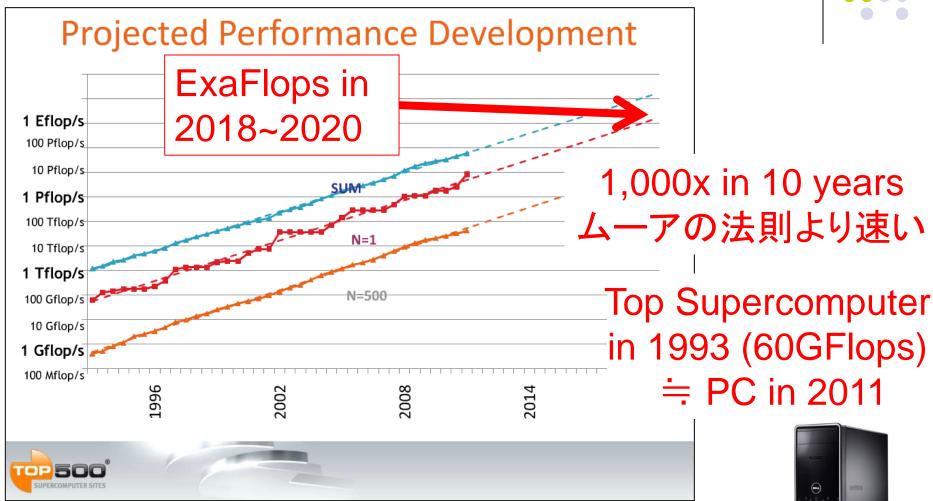
19年間で性能300,000倍 Jun-96|SR2201/1024 Nov-96 CP-PACS/2048 Jun-97 ASCI Red

アメリカと日本の一騎打ち

⇒中国の台頭

Nov-97 ASCI Red Jun-98 ASCI Red

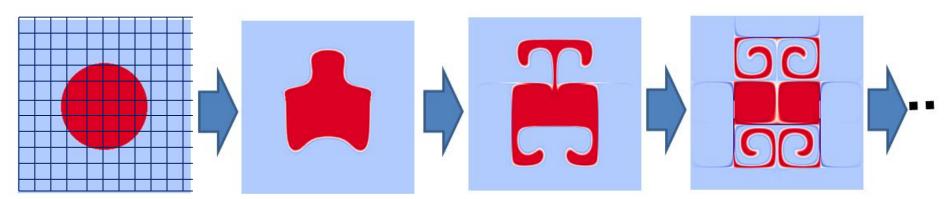
Nov-98 ASCI Red


Jun-99	ASCI Red	2121	SNL	US
Nov-99	ASCI Red	2379	SNL	US
Jun-00	ASCI Red	2379	SNL	US
Nov-00	ASCI White	4938	LLNL	US
Jun-01	ASCI White	7226	LLNL	US
Nov-01	ASCI White	7226	LLNL	US
Jun-02	Earth-Simulator	35860	ES Center	Japan
Nov-02	Earth-Simulator	35860	ES Center	Japan

١	DOE/NNSA/LANL					US
I	N	Kunner		1105000	DOE/NNSA/LANL	US
	Nov			1759000	ORNL	US
	Jun-10		1	1759000	ORNL	US
	Nov-10	1 \		2566000	NSC in Tianjin	China
	Jun-11	K co		8162000	RIKEN AICS	Japan
	Nov-11	K Comp	47 CDELO EN AICS			
	Jun-12	Sequoia	17.6PFlops (EN AICS)			US
	Nov-12				DOE/SC/ORNL	US

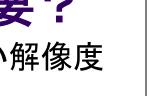
参考: www.top500.org

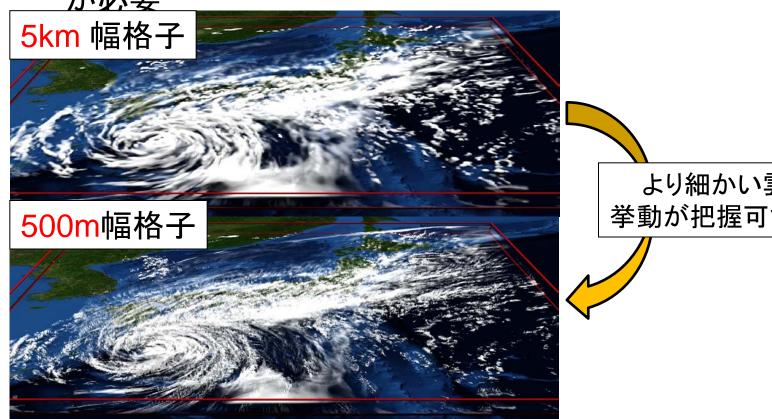
Development of Supercomputers (from www.top500.org)


なぜ計算速度が重要?

- 仮想実験(シミュレーション)のためには、ばく大な量の計算
 を、タイムリーにこなさなければならないから
- ⇒明日の天気の計算に、一年かかっては意味がない!

天気予報はどうやって計算?


空間を,細かいマス目に分割 ⇒ 1点ずつ計算が必要ある瞬間の計算が終了したら,次の瞬間の計算へ


- 因果律: 過去⇒現在⇒未来⇒もっと未来
- パラパラ漫画のように計算を続ける

なぜ計算速度が向上し続ける必要?

より厳密なシミュレーションを行うには、細かい解像度 が必要

より細かい雲の 挙動が把握可能に!

10倍の高解像度のためには

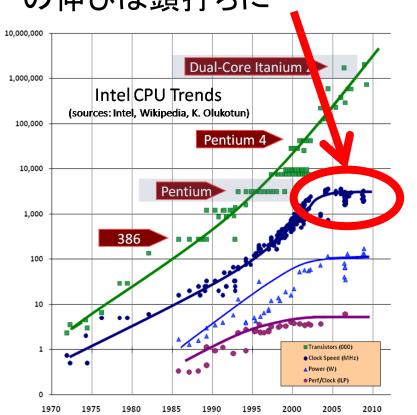
X方向10倍×Y方向10倍×Z方向10倍×時間方向10倍=10000倍 の計算をこなす必要!

一般的なスパコンの構造

- システム = 多数の計算ノード + 外部ストレージ
 - パーツ間はネットワークで接続
- 計算ノード = 1以上のプロセッサ+メモリ + ローカルストレージ
 - パーツ間はPCI-e, QPIなどの通信 路で接続
- プロセッサ = 1以上のコア (+ L3 キャッシュ等)

スパコンの計算性能は何で決まる?

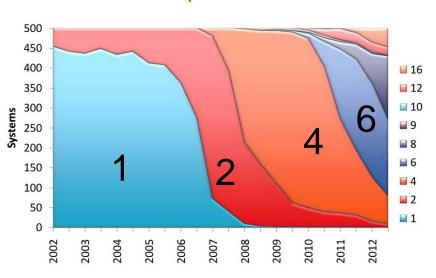
理論ピーク演算性能:


システムが仮に浮動小数演算のみを続けたときのFlops値。 実効演算性能とは区別が必要。以下の積となる:

- ●クロック周波数(Hz=1/sec)
 - 1~3GHz程度。2003ごろより頭打ち
- ●1クロックあたりの同時計算数(flop)
 - TSUBAME2のCPUでは4, Sandy Bridge世代(AVX)で8
 - 単精度はその2倍
- プロセッサあたりのコア数
 - 4~16程度, これからも伸びる見込み
- 計算ノードあたりのプロセッサ数
 - 1~4程度
- ●計算ノード数
 - TSUBAME2では1400, 京コンピュータでは88000

近年のスパコンの動向

2003年ごろからクロック周波数の伸びは頭打ちに



プロセッサあたりのコア数 を増やして性能を稼ぐ方向に

Cores per Socket

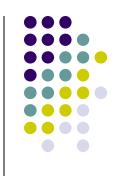
90年代までの常識:「5年待てば私のプログラムは速くなる」 今の常識:「並列プログラミング覚えないと!」

GPUやアクセラレータ

- 「周波数はあまり高くせず、並列度で稼ぐ」という方針をさらに推し進めたのが、GPUやアクセラレータ
- GPU(graphic processing unit)はもともと画像出力用専用プロセッサだが、演算へ転用(GPGPU)

Intel Xeon X5670

 $2.93 \text{ GHz} \times 4 \text{ Flop} \times 6 \text{ core} = 70.4 \text{GFlops}$



NVIDIA Tesla M2050

 $1.15 \text{ GHz} \times 32 \text{ Flop} \times 14 \text{ SM} = 515 \text{GFlops}$

- TSUBAME2.0, Titan(2012 No.1), Tianhe-1A(2010 No.1)などが採用
- NVIDIA GPU, AMD/ATI GPU, Intel Xeon Phiなど

ここで、「TSUBAME2.0利用ガイダンス」の説明

本授業では

- 本授業の受講者は t2g-ppcomp ユーザグループ に入ってもらう予定
 - t2subコマンドで "-W grouplist=t2g-ppcomp"
 - ちょっと大きなプログラムも動かせるように
- 授業に関する質問は担当教員あてに
 - 「レポートの〆切はいつですか?」などをsoudan MLに 投げないように

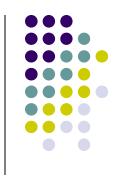
次回までに準備してください

- ノートPCを持参のこと / Please bring your laptop PC
 - 無線ネットワーク(Wifi)が使えること
 - titech-pubnetの使い方を調べてください
 - SSHの使える端末ソフトをインストールすること
 - WindowsノートPCなら、Putty, Teraterm+SSHなど
- TSUBAME2のアカウントを作ってください / Please make your account on TSUBAME2
 - 東工大ポータル ⇒ TSUBAME2.0利用ポータルより
 - 作成後、遠藤へ下記をメール連絡

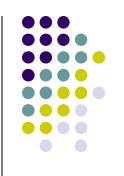
Subject: TSUBAME2 ppcomp account

To: endo@is.titech.ac.jp

- 専攻・研究室
- 学年
- 氏名
- アカウント名


TSUBAME情報源

- http://tsubame.gsic.titech.ac.jp
 - マニュアル
 - 統計情報(混雑具合など)
 - メンテナンス予定
- スパコン相談ML:
 - soudan@cc.titech.ac.jp
 授業に関することは遠藤など
 教員に!



連絡先/Contact

- 授業全体に関すること
 - 遠藤 endo@is.titech.ac.jp
- ノートPCの準備が困難な場合も、早急宛先に上記へ相談のこと
- 遠藤のページ
 - http://www.el.gsic.titech.ac.jp/~endo/

次回/Next Lecture

- April 15 (Mon)
 - 並列プログラミングモデル
 - OpenMPによる共有メモリプログラミング (1)