
Machine Learning
Chapter 6. Implementations

2

Implementation:
Real machine learning schemes

 Decision trees: from ID3 to C4.5
 Pruning, missing values, numeric attributes, efficiency

 Decision rules: from PRISM to Induct and PART
 Missing values, numeric attributes, computing

significance, rules with exceptions

 Extended linear classification: support vectors
 Non-linear boundaries, max margin hyperplane, kernels

 Instance-based learning
 Speed up, combat noise, attribute weighting,

generalized exemplars

 Numeric prediction
 Regression/model trees, locally weighted regression

 Clustering: hierarchical, incremental, probabilistic
 K-means, heuristic, mixture model, EM, Bayesian

6

3

Industrial-strength
algorithms

 For an algorithm to be useful in a wide
range of real-world applications it must:
 Permit numeric attributes
 Allow missing values
 Be robust in the presence of noise
 Be able to approximate arbitrary concept

descriptions (at least in principle)

 Basic schemes need to be extended to
fulfill these requirements

4

Decision trees

Extending ID3:
to permit numeric attributes: straightforward
to dealing sensibly with missing values: trickier
stability for noisy data:

requires pruning mechanism
End result: C4.5 (Quinlan)
Best-known and (probably) most widely-used

learning algorithm
Commercial successor: C5.0

5

Numeric attributes

 Standard method: binary splits
 E.g. temp < 45

 Unlike nominal attributes,
every attribute has many possible split points

 Solution is straightforward extension:
 Evaluate info gain (or other measure)

for every possible split point of attribute
 Choose “best” split point
 Info gain for best split point is info gain for

attribute

 Computationally more demanding

6

Weather data (again!)
Outlook Temperature Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild Normal False Yes

… … … … …

If outlook = sunny and humidity = high then play = no
If outlook = rainy and windy = true then play = no
If outlook = overcast then play = yes
If humidity = normal then play = yes
If none of the above then play = yes

Outlook Temperature Humidity Windy Play

Sunny 85 85 False No

Sunny 80 90 True No

Overcast 83 86 False Yes

Rainy 75 80 False Yes

… … … … …

If outlook = sunny and humidity > 83 then play = no
If outlook = rainy and windy = true then play = no
If outlook = overcast then play = yes
If humidity < 85 then play = yes
If none of the above then play = yes

7

Example

 Split on temperature attribute:

 E.g. temperature  71.5: yes/4, no/2
temperature  71.5: yes/5, no/3

 Info([4,2],[5,3])
= 6/14 info([4,2]) + 8/14 info([5,3])
= 0.939 bits

 Place split points halfway between values
 Can evaluate all split points in one pass!

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

8

Avoid repeated sorting!

 Sort instances by the values of the numeric
attribute
 Time complexity for sorting: O (n log n)

 Does this have to be repeated at each node
of the tree?

 No! Sort order for children can be derived
from sort order for parent
 Time complexity of derivation: O (n)
 Drawback: need to create and store an array

of sorted indices for each numeric attribute

9

Binary vs multiway splits

 Splitting (multi-way) on a nominal attribute
exhausts all information in that attribute
 Nominal attribute is tested (at most) once on

any path in the tree

 Not so for binary splits on numeric
attributes!
 Numeric attribute may be tested several times

along a path in the tree

 Disadvantage: tree is hard to read
 Remedy:

 pre-discretize numeric attributes, or
 use multi-way splits instead of binary ones

10

Computing multi-way
splits

 Simple and efficient way of generating
multi-way splits: greedy algorithm

 Dynamic programming can find optimum
multi-way split in O (n2) time
 imp (k, i, j) is the impurity of the best split of

values xi … xj into k sub-intervals
 imp (k, 1, i) =

min0<j <i imp (k–1, 1, j) + imp (1, j+1, i)
 imp (k, 1, N) gives us the best k-way split

 In practice, greedy algorithm works as well

11

Missing values

 Split instances with missing values into
pieces
 A piece going down a branch receives a

weight proportional to the popularity of the
branch

 weights sum to 1

 Info gain works with fractional instances
 use sums of weights instead of counts

 During classification, split the instance into
pieces in the same way
 Merge probability distribution using weights

12

Pruning

 Prevent overfitting to noise in the data
 “Prune” the decision tree
 Two strategies:

• Postpruning
take a fully-grown decision tree and discard
unreliable parts

• Prepruning
stop growing a branch when information
becomes unreliable

 Postpruning preferred in practice—
prepruning can “stop early”

13

Prepruning

 Based on statistical significance test
 Stop growing the tree when there is no

statistically significant association between any
attribute and the class at a particular node

 Most popular test: chi-squared test
 ID3 used chi-squared test in addition to

information gain
 Only statistically significant attributes were

allowed to be selected by information gain
procedure

14

Early stopping

 Pre-pruning may stop the growth process
prematurely: early stopping

 Classic example: XOR/Parity-problem
 No individual attribute exhibits any significant

association to the class
 Structure is only visible in fully expanded tree
 Prepruning won’t expand the root node

 But: XOR-type problems rare in practice
 And: prepruning faster than postpruning

a b class

1 0 0 0

2 0 1 1

3 1 0 1

4 1 1 0

15

Postpruning
 First, build full tree
 Then, prune it
 Fully-grown tree shows all attribute interactions

 Problem: some subtrees might be due to
chance effects

 Two pruning operations:
 Subtree replacement
 Subtree raising

 Possible strategies:
 error estimation
 significance testing
 MDL principle

16

Subtree
replacement
 Bottom-up
 Consider replacing a tree

only after considering all
its subtrees

Attribute Type 1 2 3 … 40

Duration (Number of years) 1 2 3 2
Wage increase first year Percentage 2% 4% 4.3% 4.5
Wage increase second year Percentage ? 5% 4.4% 4.0
Wage increase third year Percentage ? ? ? ?
Cost of living adjustment {none,tcf,tc} none tcf ? none
Working hours per week (Number of hours) 28 35 38 40
Pension {none,ret-allw, empl-cntr} none ? ? ?
Standby pay Percentage ? 13% ? ?
Shift-work supplement Percentage ? 5% 4% 4
Education allowance {yes,no} yes ? ? ?
Statutory holidays (Number of days) 11 15 12 12
Vacation {below-avg,avg,gen} avg gen gen avg
Long-term disability assistance {yes,no} no ? ? yes
Dental plan contribution {none,half,full} none ? full full
Bereavement assistance {yes,no} no ? ? yes
Health plan contribution {none,half,full} none ? full half
Acceptability of contract {good,bad} bad good good good

17

Subtree
replacement
 Bottom-up
 Consider replacing a tree

only after considering all
its subtrees

18

Subtree raising
 Delete node
 Redistribute instances
 Slower than subtree

replacement
(Worthwhile?)

19

Estimating error rates

 Prune only if it reduces the estimated error
 Error on the training data is NOT a useful

estimator
(would result in almost no pruning)

 Use hold-out set for pruning
(“reduced-error pruning”)

 C4.5’s method
 Derive confidence interval from training data
 Use a heuristic limit, derived from this, for

pruning
 Standard Bernoulli-process-based method
 Shaky statistical assumptions (based on

training data)

20

C4.5’s method

 Error estimate for subtree is weighted sum
of error estimates for all its leaves

 Error estimate for a node:

 If c = 25% then z = 0.69 (from normal
distribution)

 f is the error on the training data
 N is the number of instances covered by

the leaf






















N
z

N
z

N
f

N
fz

N
zfe

2

2

222

1
42

21

Example

f=0.33
e=0.47

f=0.5
e=0.72

f=0.33
e=0.47

f = 5/14
e = 0.46
e < 0.51
so prune!

Combined using ratios 6:2:6 gives 0.51

Example

22

Complexity of tree
induction

Assume
m attributes
n training instances
tree depth O (log n)

Building a tree O (m n log n)
Subtree replacement O (n)
Subtree raising O (n (log n)2)
Every instance may have to be redistributed at

every node between its leaf and the root
Cost for redistribution (on average): O (log n)

Total cost: O (m n log n) + O (n (log n)2)

23

From trees to rules
Simple way: one rule for each leaf
C4.5rules: greedily prune conditions from

each rule if this reduces its estimated error
Can produce duplicate rules
Check for this at the end

Then
look at each class in turn
consider the rules for that class
find a “good” subset (guided by MDL)

Then rank the subsets to avoid conflicts
Finally, remove rules (greedily) if this

decreases error on the training data

24

C4.5: choices and options

 C4.5rules slow for large and noisy datasets
 Commercial version C5.0rules uses a

different technique
 Much faster and a bit more accurate

 C4.5 has two parameters
 Confidence value (default 25%):

lower values incur heavier pruning
 Minimum number of instances in the two most

popular branches (default 2)

25

Discussion

 The most extensively studied method of
machine learning used in data mining

 Different criteria for attribute/test selection
rarely make a large difference

 Different pruning methods mainly change
the size of the resulting pruned tree

 C4.5 builds univariate decision trees
 Some TDITDT systems can build

multivariate trees (e.g. CART)

TDIDT: Top-Down Induction of Decision Trees

26

Classification rules

 Common procedure: separate-and-conquer
 Differences:

 Search method (e.g. greedy, beam search, ...)
 Test selection criteria (e.g. accuracy, ...)
 Pruning method (e.g. MDL, hold-out set, ...)
 Stopping criterion (e.g. minimum accuracy)
 Post-processing step

 Also: Decision list
vs.

one rule set for each class

27

Test selection criteria
 Basic covering algorithm:

 keep adding conditions to a rule to improve its accuracy
 Add the condition that improves accuracy the most

 Measure 1: p/t
 t total instances covered by rule

p number of these that are positive
 Produce rules that don’t cover negative instances,

as quickly as possible
 May produce rules with very small coverage

—special cases or noise?

 Measure 2: Information gain p (log(p/t) – log(P/T))
 P and T the positive and total numbers before the new

condition was added
 Information gain emphasizes positive rather than negative

instances

 These interact with the pruning mechanism used

28

Missing values,
numeric attributes

 Common treatment of missing values:
for any test, they fail
 Algorithm must either

 use other tests to separate out positive instances
 leave them uncovered until later in the process

 In some cases it’s better to treat “missing”
as a separate value

 Numeric attributes are treated just like they
are in decision trees

29

Pruning rules

 Two main strategies:
 Incremental pruning
 Global pruning

 Other difference: pruning criterion
 Error on hold-out set (reduced-error pruning)
 Statistical significance
 MDL principle

 Also: post-pruning vs. pre-pruning

30

INDUCT

 Performs incremental pruning

Initialize E to the instance set
Until E is empty do

For each class C for which E contains an instance
Use basic covering algorithm to create best perfect
rule for C
Calculate m(R): significance for rule

and m(R-): significance for rule with final
condition omitted

If m(R-) < m(R), prune rule and repeat previous step
From the rules for the different classes, select the most

significant one (i.e. with smallest m(R))
Print the rule
Remove the instances covered by rule from E

Continue

31

Computing significance

 INDUCT’s significance measure for a rule:
 Probability that a completely random rule with

same coverage performs at least as well

 Random rule R selects t cases at random
from the dataset

 How likely it is that p of these belong to the
correct class?

 This probability is given by the
hypergeometric distribution

32

Hypergeometric
distribution






























t
T

pt
PT

p
P

Random rule
selects t examples

Class C contains
P examples

dataset contains
T examples

p examples
correctly covered

Pr[of t examples selected at random,
exactly p are in class C]

What is the probability that a
random rule does at least as well ?


 






























),min(

)(
Pt

pi

t
T

it
PT

i
P

Rm

This is the statistical significance of the rule

33

Binomial
distribution

 Hypergeometric is hard to
compute

 Approximation: sample
with replacement

instead of
without replacement

ptp

T
P

T
P

p
t 







 













 1

Random rule
selects t examples

Class C contains
P examples

dataset contains
T examples

p examples
correctly covered

34

Using a pruning set

 For statistical validity, must evaluate
measure on data not used for training:
 This requires a growing set and a pruning set

 Reduced-error pruning :
build full rule set and then prune it

 Incremental reduced-error pruning :
simplify each rule as soon as it is built
 Can re-split data after rule has been pruned

 Stratification advantageous

35

Incremental reduced-error
pruning

Initialize E to the instance set
Until E is empty do

Split E into Grow and Prune in the ratio 2:1
For each class C for which Grow contains an instance

Use basic covering algorithm to create best perfect rule
for C

Calculate w(R): worth of rule on Prune
and w(R-): worth of rule with final condition

omitted
If w(R-) > w(R), prune rule and repeat previous step

From the rules for the different classes, select the one
that’s worth most (i.e. with largest w(R))

Print the rule
Remove the instances covered by rule from E

Continue

36

Measures used in incr.
reduced-error pruning

 [p + (N – n)] / T
 (N is total number of negatives)
 Counterintuitive:

 p = 2000 and n = 1000 vs. p = 1000 and n = 1

 Success rate p / t
 Problem: p = 1 and t = 1

vs. p = 1000 and t = 1001
 (p – n) / t

 Same effect as success rate because it equals
2p/t – 1

 Seems hard to find a simple measure of a
rule’s worth that corresponds with intuition

 Use hypergeometric/binomial measure?

37

Variations

 Generating rules for classes in order
 Start with the smallest class
 Leave the largest class covered by the default

rule

 Stopping criterion
 Stop rule production if accuracy becomes too

low

 Rule learner RIPPER:
 Uses MDL-based stopping criterion
 Employs post-processing step to modify rules

guided by MDL criterion

38

PART

 Avoids global optimization step used in
C4.5rules and RIPPER

 Generates an unrestricted decision list
using basic separate-and-conquer
procedure

 Builds a partial decision tree to obtain a
rule
 A rule is only pruned if all its implications are

known
 Prevents hasty generalization

 Uses C4.5’s procedures to build a tree

39

Building a partial tree

Expand-subset (S):
Choose test T and use it to split set of examples

into subsets
Sort subsets into increasing order of average

entropy
while

there is a subset X not yet been expanded
AND all subsets expanded so far are leaves

expand-subset(X)
if

all subsets expanded are leaves
AND estimated error for subtree

 estimated error for node
undo expansion into subsets and make node a leaf

40

Example

41

Notes on PART

 Make leaf with maximum coverage
into a rule

 Treat missing values just as C4.5 does
 I.e. split instance into pieces

 Time taken to generate a rule:
 Worst case: same as for building a pruned tree

 Occurs when data is noisy

 Best case: same as for building a single rule
 Occurs when data is noise free

42

Rules with exceptions

 Idea: allow rules to have exceptions
 Example: rule for iris data

 New instance:

 Modified rule:

If petal-length  2.45 and petal-length < 4.45
then Iris-versicolor

Sepal
length

Sepal
width

Petal
length

Petal
width

Type

5.1 3.5 2.6 0.2 Iris-setosa

If petal-length  2.45 and petal-length < 4.45
then Iris-versicolor

EXCEPT if petal-width < 1.0 then Iris-setosa

43

A more complex example

 Exceptions to exceptions to exceptions …

default: Iris-setosa
except if petal-length  2.45 and petal-length < 5.355

and petal-width < 1.75
then Iris-versicolor

except if petal-length  4.95
and petal-width < 1.55

then Iris-virginica
else if sepal-length < 4.95

and sepal-width  2.45
then Iris-virginica

else if petal-length  3.35
then Iris-virginica

except if petal-length < 4.85
and sepal-length < 5.95

then Iris-versicolor

44

Advantages of using
exceptions

 Rules can be updated incrementally
 Easy to incorporate new data
 Easy to incorporate domain knowledge

 People often think in terms of exceptions
 Each conclusion can be considered just in

the context of rules and exceptions that
lead to it
 Locality property is important for

understanding large rule sets
 “Normal” rule sets don’t offer this advantage

45

More on exceptions

 Default...except if...then...
is logically equivalent to
if...then...else
(where the else specifies what the default
did)

 But: exceptions offer a psychological
advantage
 Assumption: defaults and tests early on apply

more widely than exceptions further down
 Exceptions reflect special cases

46

Rules with exceptions

 Given: a way of generating a single good
rule

 Then: it’s easy to generate rules with
exceptions

1. Select default class for top-level rule
2. Generate a good rule for one of the

remaining classes
3. Apply this method recursively to the two

subsets produced by the rule
(I.e. instances that are covered/not covered)

47

Iris data example

Exceptions are represented as
Dotted paths, alternatives as
solid ones.

48

Extending linear
classification

 Linear classifiers can’t model nonlinear
class boundaries

 Simple trick:
 Map attributes into new space consisting of

combinations of attribute values
 E.g.: all products of n factors that can be

constructed from the attributes

 Example with two attributes and n = 3:
3
23

2
2132

2
12

3
11 awaawaawawx 

49

Problems with this
approach

 1st problem: speed
 10 attributes, and n = 5  >2000 coefficients
 Use linear regression with attribute selection
 Run time is cubic in number of attributes

 2nd problem: overfitting
 Number of coefficients is large relative to the

number of training instances
 Curse of dimensionality kicks in

50

Support vector machines

 Support vector machines are algorithms for
learning linear classifiers

 Resilient to overfitting because they learn a
particular linear decision boundary:
 The maximum margin hyperplane

 Fast in the nonlinear case
 Use a mathematical trick to avoid creating

“pseudo-attributes”
 The nonlinear space is created implicitly

51

The maximum margin
hyperplane

 The instances closest to the maximum margin
hyperplane are called support vectors

52

Support vectors

 This means the hyperplane
can be written as

22110 awawwx 

aa  )(
 vectorsupp. is

iybx
i

ii

 The support vectors define the maximum margin hyperplane!
 All other instances can be deleted without changing its

position and orientation

53

Finding support vectors

 Support vector: training instance for which i > 0
 Determine i and b ?—

A constrained quadratic optimization problem
 Off-the-shelf tools for solving these problems
 However, special-purpose algorithms are faster
 Example: Platt’s sequential minimal optimization

algorithm (implemented in WEKA)
 Note: all this assumes separable data!

aa  )(
 vectorsupp. is

iybx
i

ii

54

Nonlinear SVMs

 “Pseudo attributes” represent attribute
combinations

 Overfitting not a problem because the
maximum margin hyperplane is stable
 There are usually few support vectors relative

to the size of the training set

 Computation time still an issue
 Each time the dot product is computed, all the

“pseudo attributes” must be included

55

A mathematical trick

 Avoid computing the “pseudo attributes”!
 Compute the dot product before doing the

nonlinear mapping
 Example: for

compute

 Corresponds to a map into the instance
space spanned by all products of n
attributes

aa  )(
 vectorsupp. is

iybx
i

ii

n

i
ii iybx))((

 vectorsupp. is

aa  

56

Other kernel functions

 Mapping is called a “kernel function”
 Polynomial kernel

 We can use others:

 Only requirement:
 Examples:

))((
 vectorsupp. is

aa   iKybx
i

ii

)()(),(jijiK xxxx  

 
2

2

2),(
ji

eK ji

xx

xx




d
jijiK)1(),( xxxx

)tanh(),(bK jiji  xxxx 

n

i
ii iybx))((

 vectorsupp. is

aa  

57

Noise

 Have assumed that the data is separable
(in original or transformed space)

 Can apply SVMs to noisy data by
introducing a “noise” parameter C

 C bounds the influence of any one training
instance on the decision boundary
 Corresponding constraint: 0  i  C

 Still a quadratic optimization problem
 Have to determine C by experimentation

58

Sparse data

SVM algorithms speed up dramatically if the
data is sparse (i.e. many values are 0)

Why? Because they compute lots and lots of
dot products

Sparse data  compute dot products very
efficiently

Iterate only over non-zero values

SVMs can process sparse datasets with
10,000s of attributes

59

Applications

Machine vision: e.g face identification
Outperforms alternative approaches (1.5%

error)

Handwritten digit recognition: USPS data
Comparable to best alternative (0.8% error)

Bioinformatics: e.g. prediction of protein
secondary structure

Text classifiation
Can modify SVM technique for numeric

prediction problems

60

Instance-based learning

 Practical problems of 1-NN scheme:
 Slow (but: fast tree-based approaches exist)

 Remedy: remove irrelevant data

 Noise (but: k -NN copes quite well with noise)
 Remedy: remove noisy instances

 All attributes deemed equally important
 Remedy: weight attributes (or simply select)

 Doesn’t perform explicit generalization
 Remedy: rule-based NN approach

61

Learning prototypes

 Only those instances involved in a decision
need to be stored

 Noisy instances should be filtered out
 Idea: only use prototypical examples

62

Speed up, combat noise

 IB2: save memory, speed up classification
 Work incrementally
 Only incorporate misclassified instances
 Problem: noisy data gets incorporated

 IB3: deal with noise
 Discard instances that don’t perform well
 Compute confidence intervals for

 1. Each instance’s success rate
 2. Default accuracy of its class

 Accept/reject instances
 Accept if lower limit of 1 exceeds upper limit of 2
 Reject if upper limit of 1 is below lower limit of 2

63

Weight attributes

IB5: weight each attribute
(Weights can be class-specific)

Weighted Euclidean distance:

Update weights based on nearest neighbor
Class correct: increase weight
Class incorrect: decrease weight
Amount of change for i th attribute depends on

|xi- yi|

222
11

2
1)(...)(nnn yxwyxw 

64

Rectangular
generalizations

Nearest-neighbor rule is used outside
rectangles

Rectangles are rules! (But they can be more
conservative than “normal” rules.)

Nested rectangles are rules with exceptions

65

Generalized exemplars

 Generalize instances into hyperrectangles
 Online: incrementally modify rectangles
 Offline version: seek small set of rectangles

that cover the instances

 Important design decisions:
 Allow overlapping rectangles?

 Requires conflict resolution

 Allow nested rectangles?
 Dealing with uncovered instances?

66

Separating generalized
exemplars

Class 1

Class
2

Separation
line

67

Generalized distance
functions

Given: some transformation operations on
attributes

K*: distance = probability of transforming
instance A into B by chance

Average over all transformation paths
Weight paths according their probability

(need way of measuring this)
Uniform way of dealing with different

attribute types
Easily generalized to give distance between

sets of instances

68

Trees for numeric
prediction

 Regression: the process of computing an
expression that predicts a numeric quantity

 Regression tree: “decision tree” where each
leaf predicts a numeric quantity
 Predicted value is average value of training

instances that reach the leaf

 Model tree: “regression tree” with linear
regression models at the leaf nodes
 Linear patches approximate continuous

function

69

Linear regression for the
CPU data

PRP =
- 56.1
+ 0.049 MYCT
+ 0.015 MMIN
+ 0.006 MMAX
+ 0.630 CACH
- 0.270 CHMIN
+ 1.460 CHMAX

70

Regression tree for the
CPU data

71

Model tree for the CPU
data

72

Numeric prediction

 Counterparts exist for all schemes
previously discussed
 Decision trees, rule learners, SVMs, etc.

 All classification schemes can be applied to
regression problems using discretization
 Discretize the class into intervals
 Predict weighted average of interval midpoints
 Weight according to class probabilities

73

Regression trees

 Like decision trees, but:
 Splitting criterion: minimize intra-subset

variation
 Termination criterion: std dev becomes small
 Pruning criterion: based on numeric error

measure
 Prediction: Leaf predicts average

class values of instances

 Piecewise constant functions
 Easy to interpret
 More sophisticated version: model trees

74

Model trees
 Build a regression tree

 Each leaf  linear regression function
 Smoothing: factor in ancestor’s predictions

 Smoothing formula:
 Same effect can be achieved by incorporating

ancestor models into the leaves

 Need linear regression function at each node
 At each node, use only a subset of attributes

 Those occurring in subtree
 (+maybe those occurring in path to the root)

 Fast: tree usually uses only a small subset of
the attributes

kn
kqnpp






75

Building the tree
 Splitting: standard deviation reduction

 Termination:
 Standard deviation < 5% of its value on full training set
 Too few instances remain (e.g. < 4)

 Pruning:
 Heuristic estimate of absolute error of LR models:

 Greedily remove terms from LR models to minimize
estimated error

 Heavy pruning: single model may replace whole subtree
 Proceed bottom up: compare error of LR model at internal

node to error of subtree

)()(i
i

i Tsd
T
T

TsdSDR  

orsolute_erraverage_ab



vn
n 

76

Nominal attributes

Convert nominal attributes to binary ones
Sort attribute by average class value
If attribute has k values,

generate k – 1 binary attributes
 i th is 0 if value lies within the first i , otherwise 1

Treat binary attributes as numeric
Can prove: best split on one of the new

attributes is the best (binary) split on original

77

Missing values

Modify splitting criterion:

To determine which subset an instance goes
into, use surrogate splitting
Split on the attribute whose correlation with

original is greatest
Problem: complex and time-consuming
Simple solution: always use the class

Test set: replace missing value with average









 )()(i

i

i Tsd
T
T

Tsd
T
mSDR

78

Surrogate splitting based
on class

Choose split point based on instances with
known values

Split point divides instances into 2 subsets
 L (smaller class average)
 R (larger)

m is the average of the two averages
For an instance with a missing value:
Choose L if class value < m
Otherwise R

Once full tree is built, replace missing values
with averages of corresponding leaf nodes

79

Pseudo-code for M5'

 Four methods:
 Main method: MakeModelTree
 Method for splitting: split
 Method for pruning: prune
 Method that computes error: subtreeError

 We’ll briefly look at each method in turn
 Assume that linear regression method

performs attribute subset selection based
on error

80

MakeModelTree

MakeModelTree (instances)
{
SD = sd(instances)
for each k-valued nominal attribute
convert into k-1 synthetic binary attributes

root = newNode
root.instances = instances
split(root)
prune(root)
printTree(root)

}

81

split

split(node)
{
if sizeof(node.instances) < 4 or
sd(node.instances) < 0.05*SD
node.type = LEAF

else
node.type = INTERIOR
for each attribute
for all possible split positions of attribute
calculate the attribute's SDR

node.attribute = attribute with maximum SDR
split(node.left)
split(node.right)

}

82

prune

prune(node)
{
if node = INTERIOR then
prune(node.leftChild)
prune(node.rightChild)
node.model = linearRegression(node)
if subtreeError(node) > error(node) then
node.type = LEAF

}

83

subtreeError

subtreeError(node)
{
l = node.left; r = node.right
if node = INTERIOR then
return (sizeof(l.instances)*subtreeError(l)

+ sizeof(r.instances)*subtreeError(r))
/sizeof(node.instances)

else return error(node)
}

84

Model tree for servo data
Result
of merging

85

Locally weighted
regression

Numeric prediction that combines
instance-based learning
linear regression

“Lazy”:
computes regression function at prediction time
works incrementally

Weight training instances
according to distance to test instance
needs weighted version of linear regression

Advantage: nonlinear approximation
But: slow

86

Design decisions

 Weighting function:
 Inverse Euclidean distance
 Gaussian kernel applied to Euclidean distance
 Triangular kernel used the same way
 etc.

 Smoothing parameter is used to scale the
distance function
 Multiply distance by inverse of this parameter
 Possible choice: distance of k th nearest

training instance (makes it data dependent)

87

Discussion

Regression trees were introduced in CART
Quinlan proposed model tree method (M5)
M5’: slightly improved, publicly available
Quinlan also investigated combining

instance-based learning with M5
CUBIST: Quinlan’s commercial rule learner

for numeric prediction
Interesting comparison: Neural nets vs. M5

88

Clustering

Unsupervised: no target value to predict
Differences between models/algorithms:
Exclusive vs. overlapping
Deterministic vs. probabilistic
Hierarchical vs. flat
Incremental vs. batch learning

Problem:
Evaluation?—usually by inspection

But:
If treated as density estimation problem,
clusters can be evaluated on test data!

89

Hierarchical clustering
 Bottom up

 Start with single-instance clusters
 At each step, join the two closest clusters
 Design decision: distance between clusters

 E.g.two closest instances in clusters
vs. distance between means

 Top down
 Start with one universal cluster
 Find two clusters
 Proceed recursively on each subset
 Can be very fast

 Both methods produce a
dendrogram g a c i e d k b j f h

90

The k-means algorithm

To cluster data into k groups:
(k is predefined)

1. Choose k cluster centers
 e.g. at random

2. Assign instances to clusters
 based on distance to cluster centers

3. Compute centroids of clusters
4. Go to step 1

 until convergence

91

Discussion

 Result can vary significantly
 based on initial choice of seeds

 Can get trapped in local minimum
 Example:

 To increase chance of finding global optimum:
restart with different random seeds

instances

initial
cluster
centres

92

Incremental clustering

 Heuristic approach (COBWEB/CLASSIT)
 Form a hierarchy of clusters incrementally
 Start:

 tree consists of empty root node

 Then:
 add instances one by one
 update tree appropriately at each stage
 to update, find the right leaf for an instance
 May involve restructuring the tree

 Base update decisions on category utility

93

Clustering weather data
ID Outlook Temp. Humidity Windy

A Sunny Hot High False

B Sunny Hot High True

C Overcast Hot High False

D Rainy Mild High False

E Rainy Cool Normal False

F Rainy Cool Normal True

G Overcast Cool Normal True

H Sunny Mild High False

I Sunny Cool Normal False

J Rainy Mild Normal False

K Sunny Mild Normal True

L Overcast Mild High True

M Overcast Hot Normal False

N Rainy Mild High True

1

2

3

94

Clustering weather data
ID Outlook Temp. Humidity Windy

A Sunny Hot High False

B Sunny Hot High True

C Overcast Hot High False

D Rainy Mild High False

E Rainy Cool Normal False

F Rainy Cool Normal True

G Overcast Cool Normal True

H Sunny Mild High False

I Sunny Cool Normal False

J Rainy Mild Normal False

K Sunny Mild Normal True

L Overcast Mild High True

M Overcast Hot Normal False

N Rainy Mild High True

4

3

Merge best host
and runner-up

5

Consider splitting the best
host if merging doesn’t help

95

Final hierarchy
ID Outlook Temp. Humidity Windy

A Sunny Hot High False

B Sunny Hot High True

C Overcast Hot High False

D Rainy Mild High False

Oops! a and b are
actually very similar

Example: the iris data (subset)

97

Clustering with cutoff

98

Category utility

 Category utility: quadratic loss function
defined on conditional probabilities:

 Every instance in different category 
numerator becomes

k

vaCvaC
CCCCU l i j

ijilijil

k

  



)]Pr[]|(Pr[]Pr[
),...,,(

22

21

2]Pr[iji vam  maximum

number of attributes

99

Numeric attributes

 Assume normal distribution:

 Then:

 Thus

becomes

 Prespecified minimum variance
 acuity parameter

2

2

2
)(

2
1)(








a

eaf

 
i

iiij
j

i daafva
2

1)(]Pr[22

k

vaCvaC
CU l i j

ijilijil  



)]Pr[]|(Pr[]Pr[22

k

C
CU l i iil

l  











11

2
1]Pr[

100

Probability-based
clustering

 Problems with heuristic approach:
 Division by k?
 Order of examples?
 Are restructuring operations sufficient?
 Is result at least local minimum of category

utility?

 Probabilistic perspective 
seek the most likely clusters given the data

 Also: instance belongs to a particular cluster
with a certain probability

101

Finite mixtures

 Model data using a mixture of distributions
 One cluster, one distribution

 governs probabilities of attribute values in that
cluster

 Finite mixtures : finite number of clusters
 Individual distributions are normal (usually)
 Combine distributions using cluster weights

102

Two-class mixture model
A 51
A 43
B 62
B 64
A 45
A 42
A 46
A 45
A 45

B 62
A 47
A 52
B 64
A 51
B 65
A 48
A 49
A 46

B 64
A 51
A 52
B 62
A 49
A 48
B 62
A 43
A 40

A 48
B 64
A 51
B 63
A 43
B 65
B 66
B 65
A 46

A 39
B 62
B 64
A 52
B 63
B 64
A 48
B 64
A 48

A 51
A 48
B 64
A 42
A 48
A 41

data

model

A=50, A =5, pA=0.6 B=65, B =2, pB=0.4

103

Using the mixture model

 Probability that instance x belongs to
cluster A:

with

 Likelihood of an instance given the clusters:

]Pr[
),;(

]Pr[
]Pr[]|Pr[]|Pr[

x
pxf

x
AAxxA AAA 



2

2

2
)(

2
1),;(









x

exf


i

xx]clusterPr[]cluster|Pr[]onsdistributi the|Pr[ii

104

Learning the clusters

 Assume:
 we know there are k clusters

 Learn the clusters 
 determine their parameters
 I.e. means and standard deviations

 Performance criterion:
 likelihood of training data given the clusters

 EM algorithm
 finds a local maximum of the likelihood

105

EM algorithm

 EM = Expectation-Maximization
 Generalize k-means to probabilistic setting

 Iterative procedure:
 E “expectation” step:

Calculate cluster probability for each instance
 M “maximization” step:

Estimate distribution parameters from cluster
probabilities

 Store cluster probabilities as instance weights
 Stop when improvement is negligible

106

More on EM

 Estimate parameters from weighted instances

 Stop when log-likelihood saturates

 Log-likelihood:

n

nn
A www

xwxwxw





...
)(...)()(

21

22
22

2
112 

n

nn
A www

xwxwxw




...
...

21

2211

])|Pr[]|Pr[(log BxpAxp iBiA
i



107

Extending the mixture
model

 More then two distributions: easy
 Several attributes: easy—assuming

independence!
 Correlated attributes: difficult

 Joint model: bivariate normal distribution
with a (symmetric) covariance matrix

 n attributes: need to estimate n + n (n+1)/2
parameters

108

More mixture model
extensions

Nominal attributes: easy if independent
Correlated nominal attributes: difficult
Two correlated attributes  v1 v2 parameters

Missing values: easy
Can use other distributions than normal:
“log-normal” if predetermined minimum is given
“log-odds” if bounded from above and below
Poisson for attributes that are integer counts

Use cross-validation to estimate k !

109

Bayesian clustering

 Problem: many parameters  EM overfits
 Bayesian approach : give every parameter

a prior probability distribution
 Incorporate prior into overall likelihood figure
 Penalizes introduction of parameters

 Eg: Laplace estimator for nominal attributes
 Can also have prior on number of clusters!
 Implementation: NASA’s AUTOCLASS

110

Discussion

 Can interpret clusters by using supervised
learning
 post-processing step

 Decrease dependence between attributes?
 pre-processing step
 E.g. use principal component analysis

 Can be used to fill in missing values
 Key advantage of probabilistic clustering:

 Can estimate likelihood of data
 Use it to compare different models objectively

