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Derive SNR and BER performance of maximal ratio
diversity combining
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1. Review of Characteristics of
Propagation Channels in Land
Mobile Communications
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Characteristics of Propagation Channel for Land
Mobile Communications (1)

® Variations in propagation channel for land mobile communications are
characterized by the following 3 variations assuming frequency spectrum of
VHF band (30 MHz — 300 MHz) or UHF band (300 MHz — 3 GHz)

B Distance-dependent path loss (large-scale propagation effects):
« Attenuation in the received signal level at a given distance between a
transmitter and a receiver.

 Received signal variation due to distance-dependent path loss occurs over
long distance (100 — 1000 m).

B Shadowing (short-scaled propagation effects):

« Variation caused by obstacles between a transmitter and receiver that
attenuate received signal power through absorption, reflection, scattering,
and diffraction.

«  When attenuation due to obstacle is strong, the signal is blocked.

 Received signal variation due to shadowing occurs over distances that are
proportional to the length of obstructing object (10 — 100 m in outdoor
environments and less in indoor environments)

B Instantaneous fading variation:
« Variation caused by obstacles surrounding a user equipment (UE).
MIMO Commun. Systems (Array Signal Processing) 4



Characteristics of Propagation Channel for Land
Mobile Communications (2)

B Distance-dependent path loss 8§
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Distance-Dependent Path Loss

B A number of distance-dependent path loss models have been
development to predict path loss in typical wireless environments

such as large urban macro cells, urban micro cells, and inside
buildings.

B Empirical path loss model in urban areas = Okumura-Hata model

L,=6525+ 26.16log,,(f.)-13.82log,,(h,)—a(h,,)
+(44.9-6.551og(h, ))log,, ()

where f_ is carrier frequency, h, is height of BS antenna, h,, is

height of a antenna of a UE, and “r’ is distance between a MS and
a UE

B Empirical path loss formula for 2GHz-freqyency band

L,=128.1+37.6log,(r)
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Log-Normal Shadowing

« Signal transmitted through a wireless channel typically
experiences random variation due to blockage from objects in
signal path = random variation of the received signal power

 But, in general, the location size, and dielectric properties,
changes in reflecting surfaces etc. of the blocking objects are
unknown =» statistical models are used to characterize the
attenuation due to shadowing

« The most common model is for the additional attenuation is “log-
normal shadowing” =» accuracy of the model has been empirically
confirmed in outdoor and indoor radio propagation environments.
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Narrowband Rayleigh Fading (1)

 UE moves in the direction of 2 degree at a speed of v (m/s)

« Path i of plane wave is received from the direction of & degree with
amplitude of a;, and phase of ¢, (i= 1, ..., N).

 Received composite signal a,(t) is represented as next equation assuming
carrier angular frequency of ..

_______________________________________________________________________________

----------------- e Phase shift (frequency shift)

b & 2 | "4---—-caused by the relative

A (t) Ea cos{a) i+ 7rvt/ A Cos(f)} ' movement to the direction
N i of a transmitter = Doppler
=Y a;-cosid; +2nvt/A-cos(&; )} -cos(w,t) ¢ shift

=l ' Direction of movement

N ' (speed of v (m/s)))
— Y a, -sin{g; +2xvt/A-cos(&; )} -sin(w.t) | 4

i=1 Path 1

_______________________________________________________________________________

PathN ——

& | Path i with
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Narrowband Rayleigh Fading (2)

® Assuming that N is large and amplitude a; and phase ¢, are
independently different, the composite signal is approximated as
Gaussian random process with zero mean and equal variance based
on the central limit theorem

————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

]Zvjai .cos{d; +2mvt/ A -cos(&; )} ]Zvjai -sin{g, + 27wt/ A - cos(&; )}
i=1 =l

______________________________________________________________________________________________________________________

® Composite signal is represented as
a.(t)=R(t)-cos{w .t +0(t)}

« Amplitude R(t) is Rayleigh distributed that follows probability density
function (PDF) of Rayleigh distribution based on the next equation

p(R)=2R/c - exp(— Rz/a)

N
where | = Zaiz is mean squared value of Rayleigh variable
i=1
* Phase ¢(t) is uniformly distributed on [0, 27]
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Fading Maximum Doppler Frequency

Doppler frequency shift due to the relative
- .
/- cos(;) movement of a UE

v/A Maximum Doppler frequency that indicates variation
in amplitude or power of a received signal suffering
Rayleigh fading

B Maximum Doppler frequency

____________________________________________________________

____________________________________________________________

 c: light velocity (= 3 x 103 m/second)

* Assuming carrier frequency of 2 GHz and speed f 3 km/h, f,
becomes 5.55 Hz

 Maximum Doppler frequency is proportional to carrier
frequency and to a speed of a UE (MS)
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Frequency-Selective Fading (1)

B Frequency-selective fading (multipath fading)

* In wideband transmission with short symbol BS
time, delayed paths due to obstacles betweena | |
BS and a UE influence on the performance. Reflector. =

* Delayed paths interfere mutually when the
delay time of the paths is distinct compared to
the symbol time (e.g., the delay time is longer
than approximately 10 % of symbol time)

. . - v, Reflector
® Different amplitude and phase variations at | #

respective frequency components UE

= Frequency-selective fading (multipath fading)
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C(

Frequency-Selective Fading (2)

B One-path channel

« Single frequency component, i.e., delay time of paths is negligible
compare to symbol time (narrowband signal)

* Frequency-flat fading and varies in time domain.

B Multipath fading =
« Delay times of paths are distinct compared to symbol time
* Frequency-selectivity appears from the composite signal of multipath

signals

/One bath N\ Mlﬁtipath channel
Path #1 Path #2

Pan st AN
> W Time | Multiple frequency

] Time :
me-frequency Time-frequency ] components are
\ B
Frequency Frequency
N ~/
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Frequency-Selective Fading (3)

B Narrowband signal
* Frequency-flat fading

« PDC (symbol rate of 21 kbps) = almost flay fading

B Wideband signal (W-CDMA, HSPA, LTE)
« Delay time of paths is much longer compared to chip or symbol
time = frequency-selectivity appears

N
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-
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N
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Measures of Frequency Selectivity

® Assume complex Gaussian wide-sense stationary uncorrelated
scattering (WSSUS) channels that arre specified by their
scattering functions.

B Measures of frequency selectivity

 Root mean square (r.m.s.) delay spread : r.m.s. delay spread of a
channel is defined as the variance in the time delay with the
normalized delay power profile of the channel as the probability
density function.

« Coherence bandwidth:

- Coherence bandwidth with level k is defined as the widest
bandwidth in which the correlation of the channel frequency
response is greater than k, where k is selected to be close to
one between zero and one

- Coherence bandwidth means the bandwidth over which the
channel frequency response is highly correlated

- Coherence bandwidth is represented using the r.m.s. delay

spreadas, 3 __ !  where his a constant value
C
h°Trms



2. Beamforming & Interference
Cancellation Using Array
Antennas
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Review of Eigen-Value Decomposition

B Question
lllustrate eigen-vectors of correlation matrix R = HH"”

(A) H=h,]eC™ (B) H=|h, h,|eC*?

z z

Y
> h
h /f:\ﬁ\l
X X
/ ! h,

B Eigen-value decomposition

Channel matrix: H Eigen vectors: E = :el e, e3]
Correlation matrix: R=HH" 2, 0 0]
Eigenvalues: A=[0 A4, 0
Eigen-decomposition: R=E A E”
0 0 A
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Classification of Array Processing

« Static or Mobile corresponds to Fixed or Adaptive

* RF control or BB control

« Beamforming, diversity, or Interference cancellation
» Average SNR, outage SNR, or SIR
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Plane Wave Signal Model

Plane wave signal model
y(?) =h(0)s(1) +n(z)

Channel response N/
h(0) = Bd(0)a(9) < i -
Array manifold
3(9) — [1 e]kdcos@ ejk2dc0s0 . ejk(M—l)dcosH] k= 2_7'[
9 ) ) R l

Antenna element directivity
d(0) @— Omni-directional pattern
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Beamforming

Received signal

y(t) = pa(0)s(¢) +n(z)
Array combining Y V V VYV

x(t) =w"y(?) v(t)

) 4

Retro directive beamforming W )%2 §>_<> X
w = fa(0)

x(1) = MPB*s(t) + Z pn; () ﬁ@x(t)

Output SNR Array gain
2 2 4 2 S
_Ells, 01 MPBEs)1 _M*p*P _(Mp*P
Eljn, (1)]'] ﬁziE[\ni o] Mo? o’
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Beamforming

L
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Interference Cancellation

Subspace decomposition
R =hh” =EAE"”
A= diag[ﬂqaﬂaa)@aﬂm]
A>A,=4=4,=0
E=[ee,.e;,e,]

\_Y_l %_J
_ — ~

Signal space Null space

e/Re, =0 (i=234)

Interference cancellation
x(t)=w"y(1)
w=e, (1=234)

L ] YO
%ﬂ
Output SNR

~w'hh"wP 0

2

Y TR
° W WO o
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Interference Cancellation

Power [dB]

Incident angle
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3. Diversity Combining
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Multipath Signal Model

Multi-path signal model

¥(6) = hs(6) +n() \

- V YV \
h(6)=> h(6))
/=1 P d ..... q
Time variant channel response
—p

h(6,) = B,(¢)d(6,)a(6,)
p,(t) = ﬁzejkmosgl
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Diversity Combining

Multi-path signal model \ /

y(?) = hs(?) +n(7) V V VvV YV
Maximum ratio diversity combining y(?)
x(t) = w"y (1) w @)\Q 99/@

w=h
Output SNR 2 ﬁex(t)
yZJMMmqﬁ]
" Efh" ()| )

Sum of each SNR

\hﬂh\ P hHh M 4
" h"ho? Z:‘
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Diversity Combining
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Characteristic Function

PDF of sum of independent random variables

J) f) Sy =) f()

z=x+Yy

f(@)= [ f@) f(z—x)dx
Convolution
Characteristic function

== [ owexpjmdt o= FIexp(mdy

Characteristic function on convolution

72271' D (D(l‘)ZHQD,-(l‘)
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PDF of Diversity Combining

Output SNR of MRC
M
V= Zyi
i=1
Characteristic function of each branch
Y. |
f () —exp[ j @;(t)=——
y 1= jyt
PDF of output SNR in MRC
M
1
)= 9@ = ( j
H 1= jnt
_ exnl — L
0= D,_M 7' p( j -
DlverS|ty gain (Xi square distribution)
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CDF of Diversity Combining

Array gain on average SNR

Cumulative distribution

19_30 /—20 -10
Normalized SNR [dB]

Diversity gain on outage SNR

MIMO Commun. Systems (Array Signal Processing)



BER of Diversity Combining

Average BER performance

Average BER 100 MRC diversity, QPSK Signaling, Rayleigh
—_ SISO 1
R(7)= | R/ ()dy i | = SMozmsota |
10 rmsgerriimmsszzenizoooonizazey —— SIMO 4x1. MISO 14 |
Instantaneous BER for BPSK signaling g - SN
1 D(:“ fEEEEEE::fzg;fEEE;::EEEEEEEEEEEEEE:’EEFEEEEEEEEEEEE?%;
Pe =—erfc(\/;) E ‘03
2 L [ N ____]
B 10T NN N
PDF Of Output SNR for MRC _SEE:::::::::::::::::::::7:55EE;:*:::::::::::,7:::::::::::555;
10 'k
— eXx ! _6,,,,,,,,,‘I,,,,,,,,I‘:::::,j‘::::f:i:::::‘[:,:f:ﬁ
f(y) (M—l)'?M 7 p 77 105 5 10 15 20 25 30

Average SNR per antenna [dB]
Average BER for MRC

-3l 5
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Beam Pattern Interpretation of Diversity
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Diversity with Non-ldentical Elements

Non-identical elements

777, dueto d,(0)#d;(0) CDF of output SNR

Characteristic function of output SNR
with non-identical elements '

PDF of output SNR in MRC with

non-identical elements 10_5 20 0 0 10

( y j Normalized SNR [dB]
f)=—; M 7
() T
7/- V1
i=1 k= lk;tz Vi i
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Spatial Correlation

Correlation matrix of received signals

H H 2
R, =E[yy”]=PE[hh" ]+ o’

Power [dB]

Correlation matrix of channels
hlhl* hlh;
hh  hyh,

R, =E[hh"]= E{

[ S
g 0
= { ; } Uncorrelated

0 g,
< R J—
= {gh . ghp} Correlated g
L EnP &h :

‘p‘ . Correlation coefficient between branches _

0 2 ;f
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Diversity Combining with Correlation

Eigen decomposition of correlation matrix

R, - { g ghp:|:EAEH
ghp 8

=(1+p)lg, 4, =(1-|0|ks,
Orthogonal conversion

CDF of output SNR

E'R E :P{(H’O g 0 )
O (1 B ‘p‘)gh 1 1 1
Diversity with non-identical elements 0 ™ Normalized SNR [dE] 0

_ _ /4 _ _ 4
T30 H awj e"p[ a—pwﬂ
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Angular Profile & Spatial Correlation

Correlation matrix

— — L
R, = E|hh" |= {gh , 5P } h=) Be"""a())
EnP & =1
Uncorrelated scattering

1 . —JjkvtcosO; . .
E{ejhtCOSQ,e JhkvtcosO; J: O for = ]

Spatial correlation

%
L L
]5{12 — E|:[Z ﬂlejkvtcos@ j[Z ﬂlejkvtcosel ejkdcos@,j :|
/=1

I=1
Angular profile

_ ZL:‘ﬂl‘ZejdeOSQI _ j‘2ﬂ‘ﬂ(8)‘2€_1’kdcos@dV
BO)f

R__ — jkd cos6, ‘: —
p—g_ [ P@)e o @ [ |poyan
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correlation coefficient

Angular Profile & Spatial Correlation

Uniform distribution

Oth order Bessel function

N ~ AS=1[deg]
N | — - AS=10[deg]

\ —— AS= 100[deg]

antenna spacing [\]

Gaussian distribution
1 0-0,)°

PO exp(————
(0) = NP p( 20 )
. 2
— )= exp[— (o kd ;m 0,) )
. 4—-element ULA with A/2 spacing
100 —————————————— ———— e casasnanas

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

L L ___

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

cumulative distribution

10_1ffffffffffffff%ffffff::::,ffiffffffffffffff%ffffffffffffff
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: —=— SIMO AS=10[deg]
-~/ SIMO AS=1[deg]
o | SISO
=20 -10 0 10 20
normalized SNR [dB]
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Diversity with Interference Cancellation

Received signal with interference

y(@) =hps,(7) + ihlisli (1) +n(?)

Interference cancellation P i >
. L Mx(M—-N)
Q= [eNH’ ’eM]E ¢ Subspace decomposition
H.. _H H
Q y_? Hps(1) + Q7 n(0) HI:[hnahlza“'ahuv]
Diversity combining E=le,,ey,ey. e,
x=w"Q"y Null gpace

~ T

Interference cancellation (N, order)
w=h,

Diversity combining (M-N,, order)
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Summary

* Array signal processing
— Beamforming & interference cancellation for plane wave signal
— Diversity combining for multi-path signal
— Diversity combining with interference cancellation

~

Improvement on SNR, SIR, and outage SNR

* Further revolution

What happen if array antennas are employed both at Tx and Rx

[ MIMO communication system }
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