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1. Frequency Selective & Time 
Dispersive Fading
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Wireless Communication Channel

Wireless is vulnerable!
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#2: Multi-path fading

#3: Time dispersive fading
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Wideband Signal Model
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Frequency Selective Fading
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Received signal
Noise
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Time Dispersive Fading & 
Inter Symbol Interference (ISI)
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Channel Capacity
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2. Features of OFDM
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Multicarrier Modulation
 Multicarrier modulation divides high-speed data stream into

multiples substreams to be transmitted over different orthogonal
subchannels centered at different subcarrier frequencies

• Let R and B be the data rate and bandwidth of high-speed data 
stream (wideband) signal 

• Coherence bandwidth for the channel is assumed to be Bc < B 
 The wideband signal experiences multi-path fading, i.e., 

frequency-selective fading
• Multicarrier modulation divides wideband signal into N linearly 

modulated subchannels in parallel 
- Subchannel bandwidth: BN = B / N
- Data rate:

• Symbol time (symbol duration) is much longer than the delay 
spread of the channel  subchannel experiences little ISI (inter-
symbol interference) degradation
- BN << Bc  (Tm is delay spread of the 
channel)

• Subchannel bandwidth is narrower than coherence bandwidth, 
i.e., BN = B / N << Bc  each subchannel experiences flat fading

mcNN TBBT  11

NRRN 
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Principle of Multicarrier Modulation (1)

Original data stream 
to be transmitted #1

#2

#3

#4

#5

#6

#7

#8

S/P conversion
(1:N) f1
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f4#8
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T

Multiplication 
of subcarier

NT

2/T
f

2/(NT)
f

2/T
f

f1 f2 f3 f4

Bandwidth of 
multicarrier signal

 Symbol time after serial-to-parallel (S/P) conversion 
becomes N times longer compared to original symbol time

Bandwidth of original 
wideband signal

Bandwidth of each 
subchannel
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

• Subchannel signal in time 
domain after multiplied with 
subcarrier frequency

 Multicarrier signal in time domain
 Increasing fluctuation in 

amplitude which leads to large 
peak-to-average power ration 
(PAPR) 

 Multiplexing for subchannels 
Multicarrier signal

Principle of Multicarrier Modulation (2)
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Time

Path #1

Symbol time 
 4T

4T



Multicarrier signal 
(for instance 4 subchannels)

Wideband signal-carrier signal

 Symbol time becomes 4 times longer 
compared to that for original single-
carrier signal

Relative delay time  for symbol time 
decreases 

 Decreasing influence of ISI (4T >> )

 Relative delay time for symbol 
time increases  according to 
the increasing data rate 
 Increasing ISI 

T



Robustness for Multipath Fading 
(Time Domain)

Time

Symbol time 
 T

Path #2
(delay time: ) Path #1 Path #2

(delay time: ) 
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f f
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ff

Each subchannel
experiences flat fading

Channel response in 
frequency domain
 Frequency-selective 

fading

• Decoding error occurs in subchannel with low 
received SNR (or received signal level)

• But, transmitted bits are successfully 
decoded

Erroneously decoded bits are corrected by 
FEC (channel coding). 

• Distortion occurs due 
to inter-symbol 
interference (ISI)

Robustness for Multipath Fading 
(Frequency Domain)

 Multicarrier signal 
(for instance 4 subchannels)

 Wideband signal-carrier signal
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In-phase (I) 
component

Quadrature (Q) 
component

Time

f0  basic frequency
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f0 = 1/T （T: symbol time)

Frequency Spectrum for OFDM
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Time Time

Time Time
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3. OFDM Transmitter and 
Receiver Structures
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Outline of OFDM Transmitter and Receiver

Mod.
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• Block transmission system using S/P & P/S converter

• Convert wide band signal to super position of narrow band 
signals satisfying 

OFDM transmit signal OFDM receive signalModulated signal Demodulated signal

Generation of OFDM signal De-muliplexing of OFDM signal

 1f
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N subcarriers

IFFT

Modulation 
mapping

GI 
insertion

• Information bit is channel-encoded using turbo code or LDPC code etc.
• Coded bit sequence is bit-interleaved to randomize burst error.
• Bit sequence after bit-interleaving is mapped to constellation point 

according to modulation scheme including QPSK, 16QAM, 64QAM etc.
• Modulated symbol sequence is serial-to-parallel-converted to N-parallel 

symbol sequences.
• N-parallel data symbols are fed into IFFT to generate OFDM signal.
• Finally, cyclic prefix is appended at the beginning of each FFT block to 

avoid inter-symbol interference.

S/P 
conversion

Structure of OFDM Transmitter

Channel 
encoder

Transmitted bit 
sequence

Interleaver

• Convolutional code
• Turbo code
• LDPC code etc.

• QPSK
• 16QAM
• 64QAM etc.

N-parallel 
symbols Baseband 

OFDM signal
Randomization for 
bust errors

Append cyclic 
prefix (CP)
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Baseband 
OFDM signal

N subcarriers

FFT Demodulation
Removal 

of CP

Recovered bit

• After removing Cyclic prefix (CP), OFDM signal is converted into the N-
parallel symbols by FFT.

• Parallel symbols are converted into serial symbol sequence.
• In general, channel response at each subcarrier position is estimated 

using reference signal (or pilot signal). Then, coherent detection is 
performed using the estimated channel response.

• In general, log-likelihood ratio (LLR) of each bit is computed.
• The LLR is fed into channel decoder
• At the last iteration of channel decoder, LLR is hard-decided to recover 

transmitted bits.

P/S 
conversion

Structure of OFDM Receiver

DecoderDe-
interleaver

N-parallel 
symbols

Coherent 
detection

MAP 
decoder
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OFDM Modulation
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OFDM Demodulation
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Frequency Spectrum for OFDM Signal
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Definition of DFT

 DFT (Discrete Fourier Transform)
• Let f(ｋ) (ｋ = 0, 1, ..., N-1) denote a discrete time sequence, N-point 

DFT of f(k) is defined as

where WN is twiddle factor which is represented as

 N denotes the number of samples in one symbol duration and that 
of subcarriers. In DFT, N takes ant integer.

 F(n) characterized the frequency component of the time samples 
f(k) associated with the original signal f(t)
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Definition of IDFT

 IDFT (Inverse Discrete Fourier Transform)
• The sequence f(k) is recovered from its DFT F(n) using inverse 

DFT (IDFT) as

where 

 N indicates the number of samples over one symbol time and that 
of subcarriers.

 f(k) is called as inverse discrete Fourier transform (IDFT) of F(n)
 In OFDM, F(n) represents N parallel data symbols corresponds to 

each subcarrier component. The frequency components are 
converted into time samples by performing inverse DFT on these 
N samples.









N
jWN
2exp1

        1,....,,1,01IDFT
1

0
 


NkWnF

N
kfnF kn

N
N

n

26

DFT Operation in OFDM









N
jWN
2exp

Symbol time, T

One sample duration, ts = T/N
time

   1,...,1,0
1

0

1

0

2

  







NkWXeXtkxx

N

n

kn
n

N

n
N
knj

nsk



 1,...,1,011 1

0

1

0

2

  









NnWx

N
ex

N
X

N

k

kn
k

N

k
N
knj

kn



 Sample point over OFDM symbol in time domain
 Multiply subcarrier to each subchannel

 Data symbol at each subcarrier after removing 
subcarrier signal

IDFT (IFFT)

DFT (FFT)
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• Twiddle factor WN denotes points which are divided into N equal 
phases for a unit circle in the complex plane.
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5. Generation of Baseband 
OFDM Signal

29 30

Subcarrier Component in OFDM Signal

t = 0
t = T

Symbol time, T, which contains N cycle Cosine wave

• Let f0 be a basic subcarrier frequency, i.e., lowest subcarrier frequency 
which corresponds to subcarrier spacing.

• Then, OFDM signal comprises multicarrier signals.
- Symbol time of T = 1/f0
- Subcarrier frequency of n x f0

• OFDM signal over one symbol is represented as 

an cos(2nf0t) – bn sin(2nf0t)

where an and bn are in-phase and quadrature components of complex 
envelop of data symbol

• OFDM symbol length is from t = 0 to t = T. 
• One OFDM symbol duration contains Cosine wave with n cycles
• Amplitude and phase components at n-th subcarrier component varies 

according to complex envelop, an and bn

30

• Let sB(t) be the summation of N subcarrier components of OFDM 
signal in which n indicates subcarrier index.

• sB(t) is called baseband OFDM signal which is given as 

• sB(t) is multicarrier signal which add N modulated symbols with 
different subcarriers.

• f0 is subcarrier spacing (or subcarrier separation).
• Parameters, an and bn are the in-phase and quadrature 

components of complex envelope of data modulation at the n-th
subcarrier

• One OFDM symbol duration contains N sets of data symbols.

       




1

0
00 2sin2cos

N

n
nnB tnfbtnfatS 

Generation of Baseband OFDM Signal (1)

31 32

 Details of baseband OFDM signal

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

n = 8

・・・・・

• sB(t) comprises 
multicarrier 
signals

• Basic subcarrier 
frequency f0
repeats n cycles 
at the n-th
subcarrier

Generation of Baseband OFDM Signal (2)

32
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• Baseband OFDM signal sB(t) is represented as

.
• We express the above equation in complex notation as

.

- dn is complex envelope of data symbol which modulates n-th
subcarrier  dn = an + j x bn

• We define u(t) as in the next equation.

• sB(t) is real part of u(t).
 sB(t) is generated from u(t). 
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Generation of Baseband OFDM Signal (3)
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• We consider sampled value of u(t) with the sampling interval of 
1/(Nf0).

• When sampling is performed over one symbol duration, T= 1/f0, N
sampled values are computed as

• N sampled values in u(t) are generated by performing inverse DFT 
(IDFT) for N complex data symbols, dn.

• Note that only the frequency component f0 is necessary to generate 
multicarrier signal.
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Generation of Baseband OFDM Signal (4)
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Example of Baseband OFDM Signal Generation (1) 
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Example of Baseband OFDM Signal Generation (2) 
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6. De-multiplexing of Baseband 
OFDM Signal

37 38

• De-multiplex (or demodulate) data symbols from complex 
baseband OFDM signal u(t) which is given as 

• Sampled signal for u(t) with the sampling interval of 1/(Nf0) over 
one OFDM symbol duration is given as 

• Since u(k/Nf0) (k = 0, 1, 2, …, N-1) is IDFT for data symbol dn (n = 0, 
1, 2,…,N-1)  de-multiplex (or demodulate) complex data symbol 
dn by performing DFT to u(k/Nf0).
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• De-multiplex  data symbol dn from OFDM signal by performing DFT 
to u(k/Nf0) as 

 1,....,2,1,01
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Coefficient of DFT using WN

De-multiplexing of Baseband OFDM Signal (2)
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7. FFT

40
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41

Matrix Notation of DFT

Matrix notation of N-point DFT when N = 8

• For N-point DFT, N2 times complex multiplications and N(N-1)
times complex additions are necessary for DFT processing 
Huge computational complexity when N is large!
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 FFT processing
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complex 
multiplications is 
decreased to 8 (64 
for DFT)
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 FFT algorithm
• FFT algorithm contains (N/2) sets of butterfly operations by the 

(log2N) stages
• Most of computations in FFT are butterfly operations without 

complex multiplications  significant decrease in computational 
complexity

• Resultant number of complex multiplications become as
(log2N-1)x(N/2).

 Number of complex multiplications is decreased to approximately 
1/220 for N = 1024.

FFT Algorithm

43

8. Cyclic Prefix

44
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ISI and ICI in Time Dispersive Channel

Path #1
Path #2
Path #3

ISI

OFDM symbol

• Discontinuous subcarrier 
component when ISI occurs 
orthogonality between 
subcarriers is destroyed (ICI).

• In land mobile communications, multipath fading occurs which 
brings about time dispersive channel

• ISI (Inter-Symbol Interference): 
- In radio access system using OFDM, multiple OFDM symbol 

are transmitted in a series  time dispersive channel causes 
ISI between successive OFDM symbols

• ICI (Inter-Carrier Interference): 
- Time dispersive channel destroys orthogonality between 

subcarriers  causes ICI

45

Matrix Representation
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Convolution in matrix form
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Guard interval
Inverse DFT

s
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IFFT FFT
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L-path model

Received signal block

G

maxGIf

Transmit signal block
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Insertion of Guard Interval

Path #1
Path #2
Path #3

OFDM symbolGI  CP

• In time dispersive channel due to multipath fading, guard interval 
(GI) is inserted at the beginning of each OFDM symbol

• Insertion of a silent guard period between successive OFDM 
symbols (i.e., zero padding) would avoid ISI, but does not avoid 
the destruction of subcarrier orthogonality.

• Cyclic prefix (CP) is used in GI
- CP preserves the orthognality of subcarriers and prevents 

ISI between successive OFDM symbols   very simple  1-
tap equalizer (i.e., conventional coherent detection) is 
applicable

No ISI and ICI 47 48

Cyclic Prefix

time

OFDM symbol
(NT)

GI
()

 Guard interval is inserted that contains a cyclic extension of the 
OFDM symbol

continuity of each subcarrier signal is maintained as long as 
length of channel response (maximum delay time of paths) is 
less than CP length

 The use of a cyclic prefix in the 
transmitted signal has the 
disadvantage of requiring more 
signal energy.

 The loss in transmit energy due 
to CP insertion is 

Eloss = NT / (NT + )

Cyclic prefix 

48
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fk

fk

fk

GI FFT window

Time Frequency

Power

Signal power at 
FFT output

Distortion Delayed path 
beyond GI

Distortion  ICI

 Delayed path 
within GI

Subcarrier frequency does not change 
(only the phase is shifted) does not 
cause ICI

Effect of Cyclic Prefix 

Time

Time

Power

Power
Frequency

Frequency
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Cyclic Prefix

Block transmission

Matrix representation of received signal block
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Cyclic shift matrix
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9. OFDM Performance
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OFDM Transmission
Diagonalization of cyclic shift matrix
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BER Performance
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Channel Capacity

OFDM signal model
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Summary

• In wideband signal
– Time dispersive fading causes inter-symbol interference
– Frequency selective fading causes distortion in power spectrum
– OFDM converts wide band signal to multiple narrow band signals
– IFFT, FFT, and cyclic prefix creates parallel orthogonal channels
– Problem of Rayleigh fading still remains even by using OFDM

Array signal processing

Some measure for Rayleigh fading
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