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network models 

• “If I know a network as some particular 
property, such as a particular degree 
distribution, what effect will that have on the 
wider behavior of the system?” 

• building mathematical models of networks 
– mimic the patterns of connections in real 

networks 

– understand the implications of the patterns 



random graph 

• a model network in which some specific set of 
parameters take fixed values, but the network 
is random in other respects 

• simplest example: G(n, m) 
– take n vertices and place m edges at random 

– simple graph (no multiedges or self-edges) 

• a probability distribution P(G) over possible 
networks 
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Ω:the total number of simple graphs 
with n vertices and m edges 

if G is a simple graph with  n vertices and m edges 

otherwise 



random graph model = an ensemble of 
networks 

• properties of random graphs = the average 
properties of the ensemble 

• diameter of G(n,m) : 
• this is a useful definition for  several reasons: 

– many average properties can be calculated exactly 
– we are often interested in typical properties of the 

networks 
– distributions of values for many network measures is 

sharply peaked 

• average degree : 
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another random graph model 

• G(n,p)  
– n : the number of vertices 
– p : the probability of edges between vertices 

• G(n,p) is the ensemble of networks with n 
vertices in which each simple G appears with 
probability 

• often called as “Erdos-Renyi model”, “Poisson 
random graph”, “Bernoulli random graph”, or 
“the random graph” 
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mean number of edges and mean 
degree of G(n,p) 

• total probability of drawing a graph with m 
edges from  the ensemble is 

 

 

• the mean value of m is  

• the mean degree is  
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the expected value of binomially 
distributed variable  
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degree distribution of G(n,p) (1) 

• a vertex is connected with probability p to 
each of the n-1 other vertices 

 

• we are interested in large networks 
– a mean degree is approximately constant 

–                     becomes vanishingly small as  
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degree distribution of G(n,p) (2) 

• for large n 

 

 

• pk becomes as follows in the limit of large n 
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clustering coefficient of G(n,p) 

• clustering coefficient : the probability that two 
network neighbors of a vertex are also 
neighbors of each other  

• in a random graph, the probability is 

 

• tends to zero in the limit 

• differs sharply from most of the real-world 
networks  (quite high clustering coefficient) 
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Giant component (1) 

• the size of the largest component in a network 
– p=0 → size=1 
– p=1 → size=n 

• giant component 
– a component whose size grows in proportion to n 

• u : average fraction of vertices that do not belong 
to the giant component 
– u = 1 if there is no giant component 
– u is the probability that a randomly chosen vertex 

does not belong to the giant component 

independent of the 
size of the network 

it will grow with the 
network 

p 

size 

0 1 

1 

n ? 



Giant component (2) 

• if vertex i does not belong to the giant 
component, for every other vertex j 
– i is not connected to j by an edge 

– I is connected to j, but j is not a member of the 
giant component 

• total probability of not being connected to g.c. 
via any of n-1 vertices: 

 

probability: 1-p 

probability: pu 

probability of not 
being connected to 
g.c. via j: 1-p+pu 
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Giant component (3) 

• taking logs of both sides 

 

• taking exponentials of both sides 

 

• u is the fraction of vertices not in the giant 
component 

• the fraction of vertices that are in the giant 
component is  
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Giant component (4) 

• graphical solution for the size of the giant 
component  

Sy =

cSey −−=1cSeS −−=1

no giant component 
0=S

0>S transition between 
two regimes 
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if c>1, two solutions for S (S=0 & S>o) 



the value of c and the growth of a set 
(1) 

• core : all neighbor are inside the set 

• peripheral : at least one neighbor is outside 

• enlarging the set by adding immediate 
neighbor 
– s vertices in the set, n-s vertices outside the set 

– the average number of connections a vertex in the 
periphery has to outside vertices is 
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the value of c and the growth of a set 
(2) 

• each peripheral has c neighbors outside 
– (# of new peripheral) = c X (# of old peripheral) 

• if c > 1, the average size of the periphery will 
grow exponentially → giant component 

• the size of the giant component is the larger 
solution of  
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small components (1) 

• when c > 1, there exist a giant component 
• what is the structure of the remainder of the network? 

– it is made up of many small components whose average 
size is constant and doesn’t increase with the size of the 
network 

• there is only one giant component 
– suppose there are two giant components which have size 

S1n and S2n 
• the number of distinct pairs of vertices between the two is S1S2n2 

• the probability that there is no edge between the two component 
is  
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small components (2) 

• taking logs of both sides and going to the limit 
 
 
 

• taking the exponential again 
 

• the probability that the two giant components 
are really components dwindles exponentially 
with increasing n 
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•    : probability that a randomly chosen vertex 
belongs to a small component of size s 
 

• small components are trees 
– a tree of s vertices contains s-1 edges 
– the total number of places where we could add an 

extra edge to the tree: 
– the total number of extra edges : 

 
– s increases more slowly than           extra edges     0  

 

sizes of small components (1) 
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sizes of small components (2) 

• because the component is a tree, 
– (size of the component) = ∑(size of ni) + 1 

• if vertex i is removed, the subcomponents 
become components in their own right 
– probability that vertex n1 belongs to a component 

of size s1 is πs1 



size of small components (3) 

• suppose that vertex i has degree k 

• probability P(s|k) that vertex i belongs to 
small component of size s is 

 

• to get πs, just average P(s|k) over the 
distribution pk of the degree  
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size of small components (4) 

• generating function encapsulates all of the 
information about the degree distribution in a 
single function 

 

• we can recover the probabilities by 
differentiating 

• substituting πs into the equation of h(z) 
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size of small components (5) 

 
 
 
 
 
 
 

• it doesn’t have a known closed-form solution for 
h(z), but we can calculate many useful things 
from it without solving for h(z) explicitly 

∑








=

+∞

= =

∞

=

∞

=

− ∑ ∏∑∑ j j

k

j

s

s

k

j
s

sk

k
c z

k
ce

1

1 110 1

...
!

π

[ ])1)((exp −= zhcz

),1(...
!

)(
1 1101 1

∑∑ ∏∑∑∑ −







=

∞

= =

∞

=

∞

=

−
∞

=
j j

s

k

j
s

sk

k
c

s

s ss
k
cezzh

k

j
δπ

δ=1 only when 
s-1=∑jsj 

∑ ∏∑∑
∞

= =

∞

=

∞

=

−








=

1 110 1

...
!

k

j

j
s

k

j

s
s

sk

k
c z

k
cze π

[ ]k
k

k
c

k

s

s
s

k

k
c zh

k
czez

k
cze )(

!! 010
∑∑∑
∞

=

−
∞

=

∞

=

− =







= π

n

n
x

n
x ∑

∞

=

=
0 !

1exp



size of small components (6) 

• mean size of the component to which a 
randomly chosen vertex belongs 

 

• from the equation of h(z) 
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divergence of the average size <s> 

• upper curve : <s> 

• lower curve : R 
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average size of a small component 

• <s>: the average size of the component to 
which a randomly chosen vertex belongs 

    ≠ average size of a component 

• ns : the actual number of components of size s 

• sns: the number of vertices that belong to 
components of size s 

• the probability that a randomly chosen vertex 
belongs to a component of size s is  

n
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average size of a small component 

• R: average size of a component 
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path lengths (1) 

• small world effect : typical length of paths 
between vertices in network tend to be short 

• the diameter of a random graph varies with the 
number n of vertices as  
– the average number of vertices s steps away from a 

randomly chosen vertex in a random graph is cs 

– it grows exponentially with s 

– diameter of the network is approximately 

• this argument is true when cs is much less than n 

nln
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path lengths (2) 

• two different starting vertices (i and j) 

• if there is a dashed line between the surfaces, 
the shortest path between i and j is s+t+1 

• the absence of an edge between the surfaces 
is a necessary and sufficient condition for  

•         pairs of vertices 
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path length (3) 

 

• diameter : the smallest value of l s.t. 

 

 

• logarithmic dependence of the diameter on n 
– acquaintance network of the entire world (7 

billion people) 
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problems with the random graph (1) 

• no transitivity or clustering 
–               tens to zero in the limit of large n 
– the acquaintance network of the human 

population in the world  
•   
•   

 
• no correlation between the degrees of 

adjacent vertices  (no communities) 
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clustering coefficient of 
real acquaintance  

network is much bigger 
(0.01 or 0.5) 



problems with the random graph (2) 

• the shape of degree distribution is different 
– real network : right-skewed 
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