Complex Networks random graphs

2012.1.16

network models

- "If I know a network as some particular property, such as a particular degree distribution, what effect will that have on the wider behavior of the system?"
- building mathematical models of networks
- mimic the patterns of connections in real networks
- understand the implications of the patterns

random graph

- a model network in which some specific set of parameters take fixed values, but the network is random in other respects
- simplest example: $\mathrm{G}(\mathrm{n}, \mathrm{m})$
- take n vertices and place m edges at random
- simple graph (no multiedges or self-edges)
\Rightarrow a probability distribution $\mathrm{P}(\mathrm{G})$ over possible
networks $\quad P(G)= \begin{cases}1 / \Omega \text { if } G \text { is a simple graph with } n \text { vertices and } m \text { edges } \\ 0 & \text { otherwise }\end{cases}$
Ω :the total number of simple graphs with n vertices and m edges

random graph model = an ensemble of

 networks- properties of random graphs = the average properties of the ensemble
- diameter of $\mathrm{G}(\mathrm{n}, \mathrm{m}):\langle l\rangle=\sum_{G} P(G) l(G)=\frac{1}{\Omega} \sum_{G} l(G)$
- this is a useful definition for several reasons:
- many average properties can be calculated exactly
- we are often interested in typical properties of the networks
- distributions of values for many network measures is sharply peaked
- average degree : $\langle k\rangle=2 m / n$

another random graph model

- $G(n, p)$
-n : the number of vertices
$-p$: the probability of edges between vertices
- $G(n, p)$ is the ensemble of networks with n vertices in which each simple G appears with probability $P(G)=p^{m}(1-p)$
- often called as "Erdos-Renyi model", "Poisson random graph", "Bernoulli random graph", or "the random graph"

mean number of edges and mean degree of $G(n, p)$

- total probability of drawing a graph with m edges from the ensemble is

$$
P(m)=\binom{\binom{n}{2}}{m} p^{m}(1-p)^{\binom{n}{2}-m}
$$

- the mean value of m is $\langle m\rangle=\sum_{m=0}^{2} m P(m)=\binom{n}{2} p$
- the mean degree is $k\rangle=\sum_{\substack{m=0 \\ \text { oftendenoted } \\ \text { asc }}}^{2} \frac{2 m}{n} P(m)=\frac{2}{n}\left(\begin{array}{c}n \\ 2\end{array} \sum_{n-1) p} p=(n-1) p\right.$
the expected value of binomially

$$
\begin{aligned}
& \text { distributed variable } \\
& \begin{array}{l}
\langle m\rangle=\sum_{m=0}^{\binom{n}{2}} m P(m)=\sum_{\binom{n}{2}}^{0 \cdot P(0)=0} \sum_{m=1} m P(m)=\sum_{m=1}^{\binom{n}{2}} m\left(\left(\begin{array}{l}
n \\
2 \\
m
\end{array}\right)\right) p^{m}(1-p)^{\binom{n}{2}-m} \\
\binom{N}{k}=\frac{N!}{k!(N-k)!}=\frac{N \cdot(N-1)!}{k \cdot(k-1)!((N-1)-(k-1))!}
\end{array} \\
& =\frac{N}{k} \cdot \frac{(N-1)!}{(k-1)!((N-1)-(k-1))!}=\frac{N}{k} \cdot\binom{N-1}{k-1}<N=\binom{n}{2}, k=m \\
& \left.\langle m\rangle=\sum_{m=1}^{\binom{n}{2}} m\left(\binom{n}{2}\right) p^{m}(1-p)^{\binom{n}{2}-m}=\binom{n}{2} p \sum_{m=1}^{\binom{n}{2}}\left(\begin{array}{c}
n \\
2 \\
m-1
\end{array}\right)-1\right) p^{m-1}(1-p)^{\binom{n}{2}-m} \\
& j=m-1 \\
& \langle m\rangle=\binom{n}{2} p \sum_{j=0}^{\binom{n}{2}-1}\binom{n}{2}-1{ }_{j} p_{\text {binomial theorem }}(1-p)^{\left.\binom{n}{2}^{-1}\right)^{-j}}=\binom{n}{2} p(p+(1-p))^{\binom{n}{2}^{-1}}=\binom{n}{2} p
\end{aligned}
$$

degree distribution of $\mathrm{G}(\mathrm{n}, \mathrm{p})(1)$

- a vertex is connected with probability p to each of the $n-1$ other vertices

$$
p_{k}=\binom{n-1}{k} p^{k}(1-p)^{n-1-k}
$$

- we are interested in large networks

- a mean degree is approximately constant
- $p=c /(n-1)$ becomes vanishingly small as $n \rightarrow \infty$

$$
\begin{aligned}
\ln \left[(1-p)^{n-1-k}\right] & =(n-1-k) \ln \left(1-\frac{c}{n-1}\right) \cong-(n-1-k) \frac{c}{n-1} \cong-c \\
(1-p)^{n-1-k} & =e^{-c} \underbrace{}_{\text {for large } n} \begin{array}{r}
\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{} x^{n} \quad \text { forall| }|x|<1 \\
\\
=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\ldots
\end{array}
\end{aligned}
$$

degree distribution of $\mathrm{G}(\mathrm{n}, \mathrm{p})(2)$

- for large n

$$
\binom{n-1}{k}=\frac{(n-1)!}{(n-1-k)!k!} \cong \frac{(n-1)(n-2) \ldots(n-k) / k!}{k!}
$$

- p_{k} becomes as follows in the limit of large n

$$
\begin{gathered}
p_{k}=\binom{n-1}{k} p^{k}(1-p)^{n-1-k}=\frac{(n-1)^{k}}{k!} p^{k} e^{-c}=\frac{(n-1)^{k}}{k!}\left(\frac{c}{n-1}\right)^{k} e^{-c}=e^{-c} \frac{c^{k}}{k!} \\
\text { Poisson distribution }
\end{gathered}
$$

clustering coefficient of $G(n, p)$

- clustering coefficient : the probability that two network neighbors of a vertex are also
neighbors of each other
- in a random graph, the probability is $p=c /(n-1)$

$$
C=\frac{c}{n-1}
$$

- tends to zero in the limit $n \rightarrow \infty$
- differs sharply from most of the real-world networks (quite high clustering coefficient)

Giant component (1)

- the size of the largest component in a network
$-\mathrm{p}=0 \rightarrow$ size $=1$

$-\mathrm{p}=1 \rightarrow$ size=n
- giant component

- u : average fraction of vertices that do not belong to the giant component
$-u=1$ if there is no giant component
$-u$ is the probability that a randomly chosen vertex does not belong to the giant component

Giant component (2)

- if vertex i does not belong to the giantfrobability of not component, for every other vertex $j \quad \begin{aligned} & \text { being connected } \\ & \text { g.c. via } j: 1-p+p u\end{aligned}$
$-i$ is not connected to j by an edge probability:1-p
$-I$ is connected to j, but j is not a member of the giant component probability: pu
- total probability of not being connected to g.c. via any of $n-1$ vertices:

$$
u=(1-p+p u)^{n-1}=\left[1-\frac{c}{n-1}(1-u)\right]^{u-1}
$$

Giant component (3)

- taking logs of both sides

$$
\ln u=(u-1) \ln \left[1-\frac{c}{n-1}(1-u)\right] \cong-(n-1) \frac{c}{n-1}(1-u)=-c(1-u)
$$

- taking exponentials of both sides

$$
u=e^{-c(1-u)}
$$

- u is the fraction of vertices not in the giant component
- the fraction of vertices that are in the giant component is $S=1-u$

Giant component (4)

- graphical solution for the size of the giant component

the value of c and the growth of a set

 (1)- core : all neighbor are inside the set
- peripheral : at least one neighbor is outside
- enlarging the set by adding immediate neighbor
- s vertices in the set, $n-s$ vertices outside the set
- the average number of connections a vertex in the periphery has to outside vertices is $p(n-s)=c \frac{n-s}{n-1} \cong c$

the value of c and the growth of a set

- each peripheral has c neighbors outside
- (\# of new peripheral) = c X (\# of old peripheral)
- if $c>1$, the average size of the periphery will grow exponentially \rightarrow giant component
- the size of the giant component is the larger solution of $s=1-e^{-c s}$

small components (1)

- when $\mathrm{c}>1$, there exist a giant component
- what is the structure of the remainder of the network?
- it is made up of many small components whose average size is constant and doesn't increase with the size of the network
- there is only one giant component
- suppose there are two giant components which have size $S_{1} n$ and $S_{2} n$
- the number of distinct pairs of vertices between the two is $\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{n}^{2}$
- the probability that there is no edge between the two component is

$$
q=(1-p)^{s_{1} S_{2} n^{2}}=\left(1-\frac{c}{n-1}\right)^{S_{1} S_{2} n^{2}}
$$

small components (2)

- taking logs of both sides and going to the limit

$$
\begin{array}{ll}
n \rightarrow \infty \\
\ln q & =S_{1} S_{2} \lim _{n \rightarrow \infty}\left[n^{2} \ln \left(1-\frac{c}{n-1}\right)\right]=S_{1} S_{2}\left[-c(n+1)+\frac{1}{2} c^{2}\right]
\end{array}
$$

$$
=c S_{1} S_{2}\left[-n+\left(\frac{1}{2} c-1\right)\right] \quad \frac{\ln (1+x)}{}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n} \quad \text { farlor expansil| }|x|<1
$$

- taking the exponential again

$$
q=q_{0} e^{-c s_{1} S_{2} n}
$$

$$
\begin{aligned}
& \text { Ontial again } \quad=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\ldots \\
& q_{0}=e^{c(c / 2 / 2) s_{1} s_{2}} \overbrace{\text { constant }}
\end{aligned}
$$

- the probability that the two giant components are really components dwindles exponentially with increasing n

sizes of small components (1)

- π_{s} : probability that a randomly chosen vertex belongs to a small component of size s
$\quad \sum_{s=0}^{\infty} \pi_{s}=1-S$
- small components are trees
- a tree of s vertices contains s-1 edges
- the total number of places where we could add an extra edge to the tree: $\binom{s}{2}-(s-1)=\frac{1}{2}(s-1)(s-2)$
- the total number of extra edges :

$$
\frac{1}{2}(s-1)(s-2) p=\frac{1}{2}(s-1)(s-2) \frac{c}{n-1}
$$

$-s$ increases more slowly than $\sqrt{n}\lceil$ extra edges $\rightarrow 0$

sizes of small components (2)

- because the component is a tree, - (size of the component) $=\sum\left(\right.$ size of $\left.n_{i}\right)+1$
- if vertex i is removed, the subcomponents become components in their own right
- probability that vertex n_{1} belongs to a component of size s_{1} is $\pi_{s 1}$

size of small components (3)

- suppose that vertex i has degree k
- probability $\mathrm{P}(\mathrm{s} \mid \mathrm{k})$ that vertex i belongs to small component of size s is

$$
P(s \mid k)=\sum_{s_{1}=1}^{\infty} \ldots . \sum_{s_{k}=1}^{\infty}\left[\prod_{j=1}^{k} \pi_{s_{j}}\right] \delta\left(s-1, \sum_{j} s_{j}\right)
$$

- to get π_{s}, just average $P(s \mid k)$ over the distribution p_{k} of the degree

$$
\begin{aligned}
& \pi_{s}=\sum_{k=1}^{\infty} p_{k} P(s \mid k)=\sum_{k=0}^{\infty} p_{k} \sum_{s_{1}=1}^{\infty} \ldots \sum_{s_{k}=1}^{\infty}\left[\prod_{j=1}^{k} \pi_{s_{j}}\right] \delta\left(s-1, \sum_{j} s_{j}\right) \\
&=e^{-c} \sum_{k=0}^{\infty} \frac{c^{k}}{k!} \sum_{s_{1}=1}^{\infty} \ldots \sum_{s_{k}=1}^{\infty}\left[\prod_{j=1}^{k} \pi_{s_{j}}\right] \delta\left(s-1, \sum_{j} s_{j}\right) \quad \because p_{k}=e^{-c} \frac{c^{k}}{k!} \\
& \quad \text { in the limit of large } \mathrm{k}
\end{aligned}
$$

size of small components (4)

- generating function encapsulates all of the information about the degree distribution in a single function

$$
h(z)=\pi_{1} z+\pi_{2} z^{2}+\pi_{3} z^{3}+\ldots=\sum_{s=1}^{\infty} \pi_{s} z^{s}
$$

- we can recover the probabilities by differentiating $\pi_{s}=\frac{1}{s!} \frac{d^{s} h}{d z^{s}}$
- substituting π_{s} into the équation of $h(z)$

$$
h(z)=\sum_{s=1}^{\infty} z^{s} e^{-c} \sum_{k=0}^{\infty} \frac{c^{k}}{k} \sum_{s=1}^{\infty} \cdots \sum_{s k=1}^{\infty}\left[\prod_{j=1}^{k} \pi_{s_{j}}\right] s\left(s-1, \sum_{j} s_{j}\right)
$$

size of small components (5)

$$
\begin{aligned}
h(z) & =\sum_{s=1}^{\infty} z^{s} e^{-c} \sum_{k=0}^{\infty} \frac{c^{k}}{k!} \sum_{s_{1}=1}^{\infty} \cdots \sum_{s_{k}=1}^{\infty}\left[\prod_{j=1}^{k} \pi_{s_{j}}\right] \delta\left(s-1, \sum_{j} s_{j}\right) \\
& =e^{-c} \sum_{k=0}^{\infty} \frac{c^{k}}{k!} \sum_{s_{1}}^{\infty} \cdots \sum_{s_{k}=1}^{\infty}\left[\prod_{j=1}^{k} \pi_{s_{j}}\right]^{1+\sum_{j} s_{j}} \quad \begin{array}{|c}
\delta=1 \text { only when } \\
s-1=\sum_{j} s_{j}
\end{array} \\
& =z e^{-c} \sum_{k=0}^{\infty} \frac{c^{k}}{k!} \sum_{s_{1}=1}^{\infty} \cdots \sum_{s_{k}=1}^{\infty}\left[\prod_{j=1}^{k} \pi_{s_{j}} z^{s_{j}}\right] \quad \because \exp x=\sum_{n=0}^{\infty} \frac{1}{n!x^{n}} \\
& =z e^{-c} \sum_{k=0}^{\infty} \frac{c^{k}}{k!}\left[\sum_{s=1}^{\infty} \pi_{s} z^{s}\right]^{k}=z e^{-c} \sum_{k=0}^{\infty} \frac{c^{k}}{k!}[h(z)]^{k}=z \exp [c(h(z)-1)]
\end{aligned}
$$

- it doesn't have a known closed-form solution for $h(z)$, but we can calculate many useful things from it without solving for $h(z)$ explicitly

size of small components (6)

- mean size of the component to which a randomly chosen vertex belongs

$$
\langle s\rangle=\frac{\sum_{s} s \pi_{s}}{\sum_{s} \pi_{s}}=\frac{h^{\prime}(1)}{1-S}
$$

$$
h^{h^{\prime}(z): \text { the first }}
$$

- from the equation of $h(z)$
$h^{\prime}(z)=\exp [c(h(z)-1)]+c z h^{\prime}(z) \exp [c(h(z)-1)]=\frac{h(z)}{z}+c h(z) h^{\prime}(z)$
$h^{\prime}(z)=\frac{h(z)}{z[1-c h(z)]} \quad h(1)=\sum_{s} \pi_{s}=1-S$
$h^{\prime}(1)=\frac{h(1)}{1-c h(1)}=\frac{1-S}{1-c+c S}$
$\langle s\rangle=\frac{1}{1-c+c S} \xlongequal[\text { when c<1 and there is no giant component, }]{\begin{array}{c}\text { it doesn't grow with the } \\ \text { number ver }\end{array}}$ $\langle\rangle=1 /(1-c)$

divergence of the average size <s>

- upper curve : $\langle s\rangle\langle s\rangle=\frac{1}{1-c+c S}$ diverges when $c=1$
- lower curve : R^{8}

8.

average size of a small component

- <s>: the average size of the component to which a randomly chosen vertex belongs \neq average size of a component
- n_{s} : the actual number of components of size s
- sn_{s} : the number of vertices that belong to components of size s
- the probability that a randomly chosen vertex belongs to a component of size s is $\pi_{s}=\frac{s n_{s}}{n}$

average size of a small component

- R : average size of a component

$$
\begin{aligned}
& R=\frac{\sum_{s} s n_{s}}{\sum_{s} n_{s}}=\frac{n \sum_{s} \pi_{s}}{n \sum_{s} \pi_{s} / s}=\frac{1-S}{\sum_{s} \pi_{s} / s} \\
& \int_{0}^{1} \frac{h(z)}{z} d z=\sum_{==1}^{\infty} \pi_{s} \int_{0}^{1} z^{s-1} d z=\sum_{s=1}^{\infty} \frac{\pi_{s}}{s} \\
& h(z)=\sum_{s=1}^{\infty} \pi_{s} z^{s} \\
& \frac{h(z)}{z}=[1-\operatorname{ch}(z)] \frac{d h}{d z} \quad \because h^{\prime}(z)=\frac{h(z)}{z[1-\operatorname{ch}(z)]} \\
& \sum_{s=1}^{\infty} \frac{\pi_{s}}{s}=\int_{0}^{1}[1-\operatorname{ch}(z)] \frac{d h}{d z} d z=\int_{0}^{1-s}(1-c h) d h=1-S-\frac{1}{2} c(1-S)^{2}
\end{aligned}
$$

$$
\because h(1)=\sum_{s} \pi_{s}=1-S \quad \therefore R=\frac{2}{2-c+c S} \begin{gathered}
\text { it does not } \\
\text { diverge at } c=1
\end{gathered}
$$

path lengths (1)

- small world effect : typical length of paths between vertices in network tend to be short
- the diameter of a random graph varies with the number n of vertices as $\ln n$
- the average number of vertices s steps away from a randomly chosen vertex in a random graph is c^{s}
- it grows exponentially with $s c^{s} \cong n$
- diameter of the network is approximately $s \cong \ln n / \ln c$
- this argument is true when c^{5} is much less than n

path lengths (2)

- two different starting vertices (i and j)
- if there is a dashed line between the surfaces, the shortest path between i and j is $s+t+1$
- the absence of an edge between the surfaces is a necessary and sufficient cóndition ford ${ }_{i j}>s+t+1$
- $c^{s} \times c^{t}$ pairs of vertices
$P\left(d_{i j}>s+t+1\right)=(1-p)^{c^{s}}$
$l=s+t+1$
$P\left(d_{i j}>l\right)=(1-p)^{c^{l-1}}=\left(1-\frac{c}{n}\right)^{c^{l-1}}$

$\ln P\left(d_{i j}>l\right)=c^{l-1} \ln \left(1-\frac{c}{n}\right) \cong-\frac{c^{l}}{n} \not \overbrace{\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}}$ forall $|x|<1$

path length (3)

$$
\left.P\left(d_{i j}>l\right)=\exp \left(-\frac{c^{\prime}}{n}\right)<\begin{array}{c}
\text { tend to zero only } \\
\text { if } f \text { groww faster } \\
\text { than } n
\end{array}\right\} \begin{gathered}
c^{\prime}=\text { an } n^{1+\varepsilon} \\
\varepsilon \rightarrow 0
\end{gathered}
$$

- diameter : the smallest value of I s.t. $P\left(d_{i j}>l\right)=0$

$$
l=\frac{\ln a}{\ln c}+\lim _{\varepsilon \rightarrow 0} \frac{(1+\varepsilon) \ln n}{\ln c}=A+\frac{\ln n}{\ln c}
$$

- logarithmic dependence of the diameter on n
- acquaintance network of the entire world (7 billion people)

$$
l=\frac{\ln n}{\ln c}=\frac{\ln \left(7 \times 10^{9}\right)}{\ln 1000}=3.3 . .
$$

problems with the random graph (1)

- no transitivity or clustering
$-C=\frac{c}{n-1}$ tens to zero in the limit of large n
- the acquaintance network of the human population in the world
- $n \cong 7,000,000,000$
- $C \cong \frac{1000}{7,000,000,000} \cong 10^{-7}$
clustering coefficient of
real acquaintance
network is much bigger (0.01 or 0.5)
- no correlation between the degrees of adjacent vertices (no communities)

problems with the random graph (2)

- the shape of degree distribution is different - real network : right-skewed

