Complex Networks
random graphs



network models

 “If | know a network as some particular

property, such as a particular degree
distribution, what effect will that have on the

wider behavior of the system?”
e building mathematical models of networks

— mimic the patterns of connections in real
networks
— understand the implications of the patterns



random graph

 a model network in which some specific set of
parameters take fixed values, but the network

is random in other respects

e simplest example: G(n, m)
— take n vertices and place m edges at random
— simple graph (no multiedges or self-edges)

—>a probability distribution P(G) over possible
netwo rkS P(G) = {1/9 if G is a simple graph with n vertices and m edges

0 otherwise

Q:the total number of simple graphs
with n vertices and m edges



random graph model = an ensemble of
networks

e properties of random graphs = the average
properties of the ensemble

e diameter of G(n,m) : (I)=> PG)I(G)== ZI(G)
e this is a useful definition for several reasons:

— many average properties can be calculated exactly

— we are often interested in typical properties of the
networks

— distributions of values for many network measures is
sharply peaked

* average degree : (k)=2m/n



another random graph model

* G(n,p)
— n : the number of vertices
— p : the probability of edges between vertices

 G(n,p) is the ensemble of networks with n
vertices in which each S|mple G appears with

prObablllty P(G)— 0 (1 p)( } mﬂ’i};&:gbi]

e often called as “Erdos-Renyi model”, “Poisson

random graph”, “Bernoulli random graph”, or
“the random graph”




mean humber of edges and mean
degree of G(n,p)

e total probability of drawing a graph with m
edges from the ensemble is

n (nj_m the expected value of
P(m) =12 pm (1_ p) 2 binomially distributed
variable (see the next page)
" :
2 n

e the mean value of mis <nan>ZomF’(m)[2jp

* the mean degree is k>=22mP(m)=2[gjp=(n—1)p
[ often denote m=0 N n

= (n _1) P [ n(n-1)/2 ]




the expected value of binomially
distributed variable
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degree distribution of G(n,p) (1)

e avertex is connected with probability p to
each of the n-1 other vertices

n-1
pk=( ) jpk(l— p)™

 we are interested in large networks

— a mean degree is approximately constant

— p=c/(n-1) becomes vanishingly small as n— o

-k | _(n_1_ B PR T RN PN
In|@- p)~*]=(n-1 k)In(l C|zn-1-k) =

n-1-k _ ~—¢ © (1"l )

I-p)" =e n@+x)=> "% foralllx| <1

for large n ] n=1 1n2 1 3Taonrexpansion
=X—=X"+=X"—..

- 2 3 )




degree distribution of G(n,p) (2)

e forlargen

uri>(n-2)...(n-k)/k! ]
[n —1j (= Y (n-1)*

k ) (n—-1-k)'k! " k!

* p, becomes as follows in the limit of large n

n-1) , e (=DX . (n=DY( ¢ jk ¢k
_ 1_ nlk: kec: ec:ec_
P ( k jp 4=P) P ki \n-1 k!

[ Poisson distribution




clustering coefficient of G(n,p)

clustering coefficient : the probability that two
network neighbors of a vertex are also ug - oW
neighbors of each other v
in @ random graph, the probability is p=c/(n-1)

c—_%
n-1

tends to zero in the limitn—>

differs sharply from most of the real-world
networks (quite high clustering coefficient)



Giant component (1)

e the size of the largest component in a network
— p=0 - size=1 ﬁ independent of the ] n ?.
— p= 1 9 size=n Twill grow with the ]
e giant component—"%
— a component whose size grows in pro
e u:average fraction of vertices that do not belong
to the giant component
— u =1 if there is no giant component

— u is the probability that a randomly chosen vertex
does not belong to the giant component

size




Giant component (2)

e if vertex i does not belong to the giantfrobabi"tv of not

. being connected to
component, for every other vertex ] |gc viaj: 1-p+pu

—

— i is not connected to j by an edge<| probabiity: 1 |
— | is connected to j, but j is not a member of the
giant component 4 probability: pu |
e total probability of not being connected to g.c.
via any of n-1 vertices:

u=(1-p+pu)= {1-‘3(1-u)}u
n-1



Giant component (3)

taking logs of both sides

Inu=(u-1) In[l—c(l—u)} ~ —(N—1)——(1—u) = —c(1—u)
n-1 n-1

taking exponentials of both sides

U= e—c(l—u)

u is the fraction of vertices not in the giant

component

the fraction of vertices that are in the giant

componentis S=1-u

_ it doesn’t have a
Szl—eﬁ‘ﬁ ol solution S|



Giant component (4)

e graphical solution for the size of the giant
component

1-e™®

transition between

d —-CcSy\ __
@a—e )_1]

(1.6

0.4

! : —cS
| ce ™ =1
2 no giant' component 1 S=0—>c=1
0 =0 e if c<=1, no giant comonent
() 0.2 (.4 0.6 0.5 1

’ if c>1, two solutions for S (5=0 & S>0)



the value of c and the growth of a set
(1)

e core : all neighbor are inside the set
e peripheral : at least one neighbor is outside

e enlarging the set by adding immediate
neighbor
— s vertices in the set, n-s vertices outside the set

— the average number of connections a vertex |ﬂ the
periphery has to out5|de vertlces is, p(n §)=c =

n-1
Ny \r .
~core L &
perlpheral k/%g o
e Y

I SN

< .
- } c neighbors
. Onaverage




the value of c and the growth of a set

e each peripheral has c neighbors outside
— (# of new peripheral) = ¢ X (# of old peripheral)

e if c>1, the average size of the periphery will
grow exponentially - giant component

e the size of the glant component is the Iarger
solution of s=1-¢= - M




small components (1)

e when c> 1, there exist a giant component

e whatis the structure of the remainder of the network?

— it is made up of many small components whose average
size is constant and doesn’t increase with the size of the
network

e thereis only one giant component

— suppose there are two giant components which have size
S,nand S,n
 the number of distinct pairs of vertices between the two is S,S,n?
* the probability that there is no edge between the two component

is : c 5,5,n°
q=(1-p)>" = (1—j
n-1



small components (2)

e taking logs of both sides and going to the limit
N — oo |:

n“In 1——
n-1

1
=cS,S,|—-n+|—-c-1
1 { +(2 ﬂ In(+x) = Z x"  forall]x| <1

e taking the exponential again X_3X2+1X3_
CI—CIO —cS;S,n qo _ec(c/2—1)8182

2 3 ),
e the probability that t giant components
are really components dwindles exponentially
with increasing n

Inq=S,S, lim

n—>oo

= 8182{— c(n +1)+;c2}

Taylor expansion

( 1)n+1

constant



sizes of small components (1)

* r.:probability that a randomly chosen vertex
belongs to a small component of size s

Zﬂ's =1-S .
s=0 /
e small components are trees _ .
— a tree of s vertices contains s-1 edges

— the total number of places where we could add an
extra edge to the tree: Z —(s-1) =%(s—1)(s—2)

— the total number of extra edges .
—(S 1)(s- 2)|O——(S 1)(s- 2)—
— S mcreases more slowly than fl:>extra edges— 0O



sizes of small components (2)

 because the component is a tree,

— (size of the component) = >(size of n)) +1

e if vertexiis removed, the subcomponents
become components in their own right

— probability that vertex n, belongs to a component
of 5iz@ S, is T, ’

n T _‘ 1,
.—“’;(\ _ | [
" _.a- i . -
"%—h_.____ . -
e 1, e

ny [
r———r-ﬂ\ . - :
J >



size of small components (3)

e suppose that vertex i has degree k

e probability P(s|k) that vertex i belongs to
small component of size s is

P(s|k)= iih—[” }5(5‘1’21 %)

=1 s.=1| j=1

e to getm,, just average P(s|k) over the
distribution p, of the degree

Ty —Zpkp(s“() ypky Y{H” }5(5 123)

j=1

cs Y[Hn }5@ 1Ys) P

| : ..
k=0 k s;=1 s.=1| j=1 in the limit of large k

k




size of small components (4)

e generating function encapsulates all of the
information about the degree distribution in a
single function

N2)=mz+7,2" +7,2° +...= ) 7,2°
s=1

e we can recover the probabilities by

differentiating , 14"
sl dz®

* substituting 1, into the equation of h(z)
h(z) = Zze 7 7 7|:H7Z' }5(5 L).s))

k=0 sl—l s,=1| j=1




size of small components (5)

2 k& & . 5=1 only wh
:ecyCyJ...y{Hﬂsj}% Loruher

} 23 S o) - zexp[&h(z)—l)]

it doesn’t have a known closed-form solution for
h(z), but we can calculate many useful things
from it without solving for h(z) explicitly



size of small components (6)

* mean size of the component to which a
randomly chosen vertex belongs

ZS% h(l)
s J

h’(z) : the first

;’] derivative of h(z)
. from e equatlon of h(z)
h'(z) = explc(h(z) —1) |+ czh' (z) explc(h(z) -1 | = ()+ch(z)h'(z)

___h(@) _ _
(Z) — Z[l_ch(z)%h(l) — ZS 7T =1- SJ
h) —T1-S

)= 1-ch(l) 1-c+cS

1 it doesn’t grow with the
<S> — number of vertices n
1—c+¢cS when c<1 and there is no giant component,
<s>=1/(1-c)




divergence of the average size <s>

1

* upper curve : <S> <> 1 C+cS diverges when c=1

* lower curve: R

Mean degree ¢



average size of a small component

<s>: the average size of the component to
which a randomly chosen vertex belongs

# average size of a component
n, : the actual number of components of size s

sn.: the number of vertices that belong to
components of size s

the probability that a randomly chosen vertex

. . sn
belongs to a component of size s is =, = .




average size of a small component

e R:average size of a component
Zssns B ﬂzsﬂ's ~1-S
DN nZ ﬁ/S_Z 7 /S

J'lﬁdz in j yAa Vi Z—

~ s

h(z) = Zn z]

h(Z) =[1- h(Z)] B hl(z):z[lﬁ(Czh)(Z)]

1-S 1 ,
Z? = J; [1—Ch(2)]—d2 = fo (1-ch)dh =1-8 - ~c(1-S)

s=1

2 it does not ]

_ ‘R = diverge at c=1
[h(l) Z” =1-5 2—C+CS




path lengths (1)

small world effect : typical length of paths
between vertices in network tend to be short

the diameter of a random graph varies with the
number n of vertices as Inn

— the average number of vertices s steps away from a
randomly chosen vertex in a random graph is c®

— it grows exponentially with's s~
— diameter of the network is approximately s=Inn/Inc

this argument is true when c¢® is much less than n



path lengths (2)

two different starting vertices (i and j)

if there is a dashed line between the surfaces,
the shortest path between i and jis s+t+1

the absence of an edge between the surfaces
IS a necessary and sufficient\cé@dition for; >s+t+1

¢*xc' pairs of vertices

P(d; >s+t+1)=(1-
|=s+t+1

P(dlj > I) (1_ p)C_

InP(d; >1)=c"* In(

p)°®

(-4
cjg

1—=
n

n




path length (3)

CI tend to zero only
| —qpnl+e
P(dij > I) =exXp| —— if ¢! grows fasterﬁ ¢ =an J
n e—>0
than n

e diameter : the smallest value of | s.t. P(d; >1)=0

Ina (1+&)Inn Inn diameter
| = | + !9—)0 | = A+ | increases slowly
nc nc nc with n

e |ogarithmic dependence of the diameter on n

— acquaintance network of the entire world (7
billion people)

Inn |n(7 X 109) small enough to account for
= = =3.3.. the results of the small-world
Inc In1000 experiments of Milgram




problems with the random graph (1)

* no transitivity or clustering

—C =ﬁ tens to zero in the limit of large n

— the acquaintance network of the human
population in the world

*n= 7’000 OOO’OOO clustering coetticient ot
C=z~ 1000 ~ ]_()7{ real acquaintance }
7,000,000,000 network is much bigger
(0.01 or 0.5)

* no correlation between the degrees of
adjacent vertices (no communities)




problems with the random graph (2)

e the shape of degree distribution is different
— real network : right-skewed

0.4 —

1
0.3 - [nterne
[] Poisson distribution
0.2
. | T
0.1 | ‘
L' m ‘
() f | L I.- - l__l- L — s

10

Fraction of vertices with degree &

Degree &
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