
Complex Networks
matrix algorithms and graph

partitioning
2011.12.5

contents of this chapter

• eigenvector centrality

• finding the leading eigenvector of the
adjacency matrix

• spectral partitioning method

• network community detection

leading eigenvectors and eigenvector
centrality

• eigenvector centrality of vertex i
– ith element of the leading eigenvector of the

adjacency matrix

• calculating the complete set of eigenvectors of
the adjacency matrix is a wasteful approach

• power method:
– x(t) will converge to the leading eigenvector as
– no faster method for calculating eigenvector

centrality

)0()(xAx tt =
∞→t

caveats of power method

• the method will not work if the initial vector x(0)
happens to be orthogonal to the leading eigenvector
– one simple way to avoid this problem is to choose the

initial vector to have all elements positive
• the elements of the vector have a tendency to grow on

each iteration
– we must periodically renormalize the vector by dividing all

the elements by the same value
• how long do we need to go on multiplying by the

adjacency matrix before the result converges to the
leading eigenvalue?
– this will depend on how accurate an answer we require.

computational complexity of power
method

1. how long each multiplication by the adjacency
matrix takes?

2. how many multiplications are needed?
1.
• adjacency matrix : n2 multiplication

• adjacency list : O(m)
– :set of neighbors of vertex i
– :ith element of
– all elements can be completed in time proportional to

ij kju ...1},{ =

[]iAx Ax [] ∑ =
= i

j

k

j ui x
1

Ax
ki operations

mk
i i 2=∑





































4

2

..

..

........

........

........
1..1..

x

x
i

{ui}

jux
2,4

how many multiplications must we
perform?

2.

• if we want this error to be at most ε

i

t

i

i
i

t
i

i

t
iii

i
i

t ccct vvvAx 







=== ∑∑∑

1
1)(

κ
κκκ

normalized ith
eigenvector

corresponding
eigenvalue

constant (depends on the
choice of initial vector)

...,)(
2

1

2

1

2
1

11

+







+= vvx

t

t c
c

c
t

κ
κ

κ
t

t c
c

c
t









=−

1

2

1

2

2

1
11

)(
κ
κ

κ
vx

)ln(
)ln()1ln(

21

21

κκ
ε cct +

≥

)(1lnln 2

2

1 −+=





 −−≈ nO

n
a

n
a

κ
κ na 112 κκκ −≈

maximum eigenvalue
minimum eigenvalue

1κ
1κκ −≥n

mean spacing
)1(2 1 −nκ

)(nOt =

1κnκ

n-1 spaces

∑=
i

iic vx)0(

computational complexity of power
method

• 1. each multiplication : O(m)

• 2. number of multiplication : O(n)
– sparse network (m n) : O(mn) O(n2)

– dense network (m n2): O(mn) O(n3)

• if adjacency matrix is used, multiplications
take O(n2), so the total calculation takes O(n3)

O(mn) time overall

∝ ≡
∝ ≡

calculating other eigenvalues and
eigenvectors

• power method calculates the largest eigenvalue
of a matrix (and the corresponding eigenvector)

• method for finding the smallest eivenvalue
– shifting all the eigenvalues by a constant amount

• eigenvalues of graph Laplacian L are non-negative

– is an eivenvector of
– their order is reversed from those of the original

Laplacian
– smallest eigenvalue of largest eigenvalue of

nλλλ ≤≤≤ ...21

iinin vvLI)()(λλλ −=−
nvvv ,...,, 21

iv iinin vvLI)()(λλλ −=−

smallest

largest

LI −nλL

finding the second-largest eigenvalue
(1)

• : normalized eigenvector corresponding to the
largest eigenvalue of a matrix

• define

• this vector has the property that

• y is equal to x along the direction of every
eigenvector of A except the leading eigenvector

• with has no term in v1 since

1v

A

11)(vxvxy T−=

0))((1111 =−=−= i
TT

i
T
i

TT
i

T
i δxvxvvvxvxvyv if i = 1

xvT
i otherwise

yvT
iic = 011 == yvTc

∑
=

=∴
n

i
iic

2
vy

∑
=

=
n

i
iic

1
vy

finding the second-largest eigenvalue
(2)

• use vector y as the starting vector for repeated
multiplication by A

• after multiplying y by A t times

• as ,
• caveats

– y might have a very small component in the direction
of v1

• periodically perform a subtraction

• not work well beyond the first couple of
eigenvectors

∑
=









==

n

i
i

t

i
i

tt ct
2 2

2)0()(vyAy
κ
κκ

less than 1
for all i > 2 ∞→t 222)(vcty tκ→

11))(()()(vyvyy ttt T−=

Gram-Schmidt
orthogonalization

efficient algorithms for computing all
eigenvalues and eigenvectors

• finding orthogonal matrix Q such that the
similarity transform gives either
– a tridiagomal matrix (if A is symmetric) or
– a Hessenberg matrix (if A is asymmetric)

• if we can find such Q, and if is an eigenvector
of with eigenvalue

• the vector is an eigenvector of T with
eigenvalue

• eigenvectors of A are

AQQT T=

iv
A iκ

i
T

i
T

i
T

i vTQAvQvQ ==κ
TQQ =−1

i
T

i vQw =
iκ

ii Qwv =

Q is an orthogonal matrix

QL algorithm: efficient numerical method
O(n) for a tridiagonal matrix
O(n2) for a Heessenberg one

algorithms for finding Q

• for a symmetric matrix
– Householder algorithm : O(n3)

• for a sparse symmetric matrix
– Lanczos algorithm : O(mn)

• for an asymmetric matrix
– Arnoldi algorithm

• combined Lanczos/QL algorithm : O(mn)

dividing networks into clusters

• “graph partitioning”, “community detection”

• network of coauthorships in a university
department
– densely connected groups

• discovering groups can

be a useful tool for

revealing structure and

organization

graph partitioning

• the number and size of the groups is fixed
– dividing a network into two groups of equal size,

such that the number of edges between them is
minimized

– example: network processes on a parallel
computer

• message transmission between processors is slow

community detection

• the number and size of the group is
unspecified
– finding the natural divisions of a network into

groups of vertices such that there are many edges
within groups and few edges between groups

• sizes of the groups might vary widely from one
group to another

• a wide variety of definitions
• a wide variety of algorithms

difference between graph partitioning
and community detection

• graph partitioning
– the number and size of the groups is specified

– dividing a network into smaller manageable pieces

• community detection
– the number and size of the groups is unspecified

– used as a tool for understanding the structure of a
network

why partitioning is hard? (1)

• graph bisection : division into two parts
– repeated bisection : division into arbitrary number

of parts

• cut size : the number of edges between
groups

• exhaustive search is prohibitively costly
– the number of ways of dividing a network of n

vertices into two groups of n1 and n2 vertices

21

2
21

1

21

221121
2121)(2)(2

)(2
!!

!
++

+

=≅ nn

n

nn

n

nn
n

ennenn
enn

nn
n

ππ
π

nennn)(2! π≅

21 nnn +=

why partitioning is hard? (2)

• if we want to divide a network into two parts
of equal size , the number of different ways
to do it is roughly

• Even algorithms that fail to find the very best
division of a network may still find a pretty
good one, and for many practical purposes
pretty good is good enough.
– heuristic algorithms

n
2
1

nn
n n

n

n 1

1

21 2
)2(

+

+

+

=
go up roughly exponentially
with the size of the network calculation becomes intractable

for the networks beyond n=30

The Kernighan-Lin algorithm
1. start with any division of the vertices into two groups
2. search for pairs of vertices whose interchange would

reduce the cut size between the groups by the largest
amount (or increase it by the smallest amount)

3. repeat the process (each vertex can only be moved
once)

4. when all swaps have been completed, go back
through every state and choose the state in which the
cut size takes its smallest value

5. this entire procedure is performed repeatedly until no
improvement in the cut size occurs

comments on the Kernighan-Lin
algorithm

• if initial partitions are different, the results can be
different

• the Kernighan-Lin algorithm is slow
– # of swaps : O(n)
– for each swap, examine all pairs of vertices : O(n2)
– check the changes after swap

• the change of cut size

• O(m/n)

– total : O(n×n2×m/n)=O(mn2)

n/2 (n/2)×(n/2)=n2/4

ij
same
j

other
j

same
i

other
i Akkkk 2−−+−=∆

i j

edges subtracted
by i’s move

ij
same
i

other
i Akk −−

average
degree

O(n3) on a sparse network
O(n4) on a dense network

spectral partitioning (1)

• a network of n vertices and m edges

• a division into group 1 and group 2

• cut size (the number of edges running
between the two groups)

∑= ijAR
i,j in
different
groups




−
+

=
1
1

is
if vertex i belongs to group 1

if vertex i belongs to group 2





=−
0
1

)1(
2
1

ji ss
if i and j are in different groups

if i and j are in the same group

∑ −=
ij

jiij ssAR)1(
4
1

spectral partitioning (2)

• the first term in the sum

• goal: find the vector s that minimizes the cut
size for given L

∑∑∑∑ ===
ij

jiiji
i

ii
i

i
ij

ij sskskkA δ2

i
j

ij kA =∑

12 =is

∑∑ =−=
ij

jiij
ij

jiijiji ssLssAkR
4
1)(

4
1 δ

ijth element of
graph Laplacian

LssTR
4
1

=
division into groups

graph structure

spectral partitioning (3)

• minimizing R is not easy
– si cannot take any values (+1 or -1)

• approximate approach: allow si to take any
values
– constraint1 : or

– constraint2 : or

ns = ns
i

i =∑ 2

if no constraint,
s=0 is trivial solution

the length of vector s
should not be changed

21 nns
i

i −=∑ the sizes of two groups
should be n1 and n2

21 nnT −=s1

spectral partitioning (4)

• differentiate with respect to the elements si

– Lagrange multipliers

• multiplying on the left by 1T

() 02 21
2 =




















−−+








−+

∂
∂ ∑∑∑

j
j

i
j

jk
kjjk

i

snnsnssL
s

µλ

constraint1 constraint2

µλ +=∑ i
j

jij ssL

1sLs µλ +=

λµ
n

nn 21 −−= 0=⋅1L 21 nnT −=s1

Laplacian matrix
(L=D-A) is symmetric

(L·1)T=1TLT=1TL=0

1s1sx
n

nn 21 −−=+=
λ
µ

x1sLs1sLLx λµλ
λ
µ

=+==+=)(

define new vector x

x is an eigenvector of the
Laplacian with eigenvalue λ

spectral partitioning (5)

• which eigenvector should we choose?

• x is orthogonal to 1 -> x ≠ 1

• cut size is proportional to the eigenvalue λ
– smallest eigenvalue is 0 that corresponds to eigenvalue 1
– choose x proportional to the eigenvector v2 corresponding

to the second smallest eigenvalue λ2

0)(21
21 =

−
−−=+= n

n
nnnnTTT 11s1x1

λ
µ

xxLxxLss TTTR λ
4
1

4
1

4
1

===

11s1sssxx TTTTT
2

2

)1(
λ
µ

λ
µ

+++=

n
nnn

n
nnnn

n
nnn 21

2
21

21
21 4)()(2 =

−
+−

−
−= λ

n
nnR 21=

but x≠1

Lxx1xLx

1xL1x

1xL1xLss

TT

TT

TT

4
1)(

4
1

)()(
4
1

)()(
4
1

4
1

=−=

−−=

−−=

λ
µ

λ
µ

λ
µ

λ
µ

λ
µ

1xs
n

nn 21 −+= si should
be +1 or -1

make this product
as large as possible

∑ 





 −

+=





 −

+
i

ii
T

n
nnxs

n
nn 2121 1xs

algorithm of spectral partitioning

1. calculate the eigenvector v2 corresponding the second
smallest eigenvalue λ2 of the graph Laplacian

2. sort the elements of the eigenvector in order from
largest to smallest

3. put the vertices corresponding to the n1 largest
elements in group 1, the rest in group 2, and calculate
the cut size

4. then put the vertices corresponding to the n1 smallest
elements in group 1, the rest in group 2, and
recalculate the cut size

5. between these two divisions of the network, choose
the one that gives the smaller cut size

comments on spectral partitioning

• disadvantages
– quality of partition: not quite as good as those

returned by other methods

• advantages
– speed :

• calculation of the eigenvector v2 : O(mn)

 (or O(n2) for sparse networks)

Kernighan-Lin

algorithm: O(n3)

community detection

• difference from graph partitioning : the
number or size of the groups is not fixed

• if no constraint, optimum division is trivial
– group 1: all vertices
– group 2: no vertex

• loose constraint
– minimize ratio
– still biased towards equal partition
– no principled rationale behind this definition

cut size = 0

21nn
R

denominator has its largest
value when n1=n2=n/2

quality measure other than cut size

• a good division is one where there are fewer
than expected such edges

• modularity (as the measure of assortative
mixing)

• modularity maximization: look for the
divisions that have the highest modularity
scores
– hard problem (takes exponential time)
– heuristic algorithms are often used

simple modularity maximization

• analog of the Kernigham-Lin algorithm
– starting from some initial (random) division
– for each vertex check how much modularity would

increase if it is moved to the other group
– repeat the above process

– identified communities
are good
– quite efficient : O(mn)

spectral modularity maximization (1)

• analogous to spectral graph partitioning

• division of a network into two parts

∑∑ =−=
ij

jiij
ij

ji
ji

ij ccB
m

cc
m
kk

A
m

Q),(
2
1),()

2
(

2
1 δδ

ci: community to which vertex i belongs
δ(m,n): Kronecker delta m

kk
AB ji

ijij 2
−=

02
22

=−=−= ∑∑∑ m
m

kkk
m

kAB i
i

j
j

i

j
ij

j
ij




−
+

=
1
1

is
if vertex i belongs to group 1

if vertex i belongs to group 2

)1(
2
1),(+= jiji ssccδ

∑∑ =+=
ij

jiij
ij

jiij ssB
m

ssB
m

Q
4
1)1(

4
1

BssT

m
Q

4
1

=

modularity matrix

spectral modularity maximization (2)

• find the value of s that maximize Q

• relax the constraints on s
– elements of s can take arbitrary value

– but its length has to be the same

BssT

m
Q

4
1

=
elements of s
are +1 or -1

ns
i

i
T ==∑ 2ss

02 =



















−+

∂
∂ ∑∑

j
j

jk
kjjk

i

snssB
s

β

i
j

jij ssB β=∑ sBs β=
s is one of the

eigenvectors of the
modularity matrix

spectral modularity maximization (3)

• choose s =u1 (eigenvector corresponding the

largest eigenvalue of the modularity matrix)
• maximizing the product

• <algorithm>

1. calculate the eigenvector of the modularity matrix
that corresponding to the largest eigenvalue

2. assign vertices to communities according to the
signs of the vector elements (positive/negative)

ββ
m
n

m
Q T

44
1

== ss

[]∑=
i

ii
T us 11us




−
+

=
1
1

is
if [u1]i>0

if [u1]i<0

spectral modularity maximization (4)

• unlike Laplacian, modularity matrix is not
sparse
– finding the leading eigenvector:O(mn)

• O(n3) for dense matrix

• O(n2) for sparse matrix

– by exploiting special properties of the modularity
matrix, it is still possible to find the eigenvector in
time O(n2) on a sparse network

division into more than two groups
• repeating bipartitioning

– even if each bipartition is optimal, repeated
bipartitioning may not be optimal

• consider the change ∆Q in the modularity of
the entire network
– bisecting a community c of size nc









−+=∆ ∑ ∑

∈ ∈cji cji
ijjiij BssB

m
Q

, ,
)1(

2
1

2
1

∑ ∑∑ ∑
∈ ∈∈ ∈









−=








−=

cji
ji

ck
ikijij

cji cji
ijjiij ssBB

m
BssB

m ,, , 4
1

4
1 δ

sBs)(

4
1 cT

m
= ∑

∈

−=
ck

ikijij
c

ij BBB δ)(

nc×nc matrix

weakness of repeated bipartitioning

• repeated optimal bipartitioning may not be
able to find optimal division

other modularity maximization
methods

• simulated annealing
– analogy with the physics of slow cooling of solids
– ground state: the state of the lowest energy
– pros: high quality cons: slow

• genetic algorithm
– analogy with biological evolution
– assign “fitness” to each of the population of different divisions
– pros: high quality cons: slow

• greedy algorithm
– bottom up : choose the merge of the biggest increase of

modularity
– pros: fast cons: moderate quality

other algorithms for community
detection

• there is no universally agreed definition of communities
– the previous discussion focus on modularity maximization, but

there are other definitions
• some algorithms are introduced in the following slides

– betweenness-based method
– hierarchical clustering

• if you want to learn more, read the following article
– “Community detection in graphs” by Santo Fortunato
– Physics Reports, Vol. 486, Issues 3-5, pp.75-174 February 2010
– http://www.sciencedirect.com/science/article/pii/S0370157309

002841

http://www.sciencedirect.com/science/article/pii/S0370157309002841�
http://www.sciencedirect.com/science/article/pii/S0370157309002841�

betweenness-based methods

• look for the edges that lie between
communities, and remove them

• edge betweenness: the number of geodesic
(shortest) paths that run along the edge
– takes time of order O(n(m+n))

• recalculation is required for each removal

dendrogram

• root(top): all vertices in one group

• leaves(bottom): each vertex in a one-vertex
group

• the algorithm generates the dendrogram from
top to bottom

• selection from different divisions
– coarse division (top)

– fine division (bottom)

comments on betweenness-based
method

• pros
– hierarchical decomposition : dendrogram

• cons
– slow: entire algorithm takes time O(mn(m+n))

• Radicchi’s method
– search for the edges that belong to short loops

– faster : O(n2)

O(n3) for sparse
networks

“bridge” edges do not
belong to short loops

hierarchical clustering

• agglomerative (<-> divisive)

• define a measure of similarity, and join the
most similar vertices to form groups
– cosine similarity

– correlation coefficient

– Euclidean distance

similarity of vertices → similarity of
groups

• there are n1n2 pairs of vertices

• single-linkage clustering
– similarity of the most similar pair

• complete-linkage clustering
– similarity of the least similar pair

• average-linkage clustering
– mean similarity of all pairs

group 1
n1 vertices

group 2
n2 vertices

procedure of hierarchical clustering

1. Choose a similarity measure and evaluate it for all
vertex pairs.

2. Assign each vertex to a group of its own, consisting of
just that one vertex. The initial similarities of the
groups are simply the similarities of the vertices.

3. Find the pair of groups with the highest similarity and
join them together into a single group.

4. Calculate the similarity between the new composite
group and all others using one of the three methods
(single-, complete-, or average-linkage clustering).

5. Repeat from step 3 until all vertices have been joined
into a single group.

similarity of two groups after join

• single-linkage

• complete-linkage

• average-linkage

•

group1

group2

group1
&2

group3 group3
similarity=σ13

similarity=σ23

similarity=max(σ13,σ23)

group1

group2

group1
&2

group3 group3
similarity=σ13

similarity=σ23

similarity=min(σ13,σ23)

group1

group2

group1
&2

group3 group3
similarity= σ13

similarity= σ23

similarity=(n1σ13+n2σ23)/(n1+n2)
n1

n2
n1+n2

computational complexity of
hierarchical clustering

• O(n) for recalculation of similarities
– O(n2) for naive approach (recalculation + search

for the biggest one)
– O(nlogn) for using a heap (recalculation + storing

in a binary heap)

• joining groups has to be repeated n-1 times
• total

– O(n3) for naive implementation
– O(n2logn) for using a heap

comments on hierarchical clustering

• results depend on which similarity measure
one chooses and which linkage method

• good at picking out the cores of groups, but
less good at assigning peripheral vertices to
appropriate groups

	Complex Networks�matrix algorithms and graph partitioning
	contents of this chapter
	leading eigenvectors and eigenvector centrality
	caveats of power method
	computational complexity of power method
	how many multiplications must we perform?
	computational complexity of power method
	calculating other eigenvalues and eigenvectors
	finding the second-largest eigenvalue (1)
	finding the second-largest eigenvalue (2)
	efficient algorithms for computing all eigenvalues and eigenvectors
	algorithms for finding Q
	dividing networks into clusters
	graph partitioning
	community detection
	difference between graph partitioning and community detection
	why partitioning is hard? (1)
	why partitioning is hard? (2)
	The Kernighan-Lin algorithm
	comments on the Kernighan-Lin algorithm
	spectral partitioning (1)
	spectral partitioning (2)
	spectral partitioning (3)
	spectral partitioning (4)
	spectral partitioning (5)
	algorithm of spectral partitioning
	comments on spectral partitioning
	community detection
	quality measure other than cut size
	simple modularity maximization
	spectral modularity maximization (1)
	spectral modularity maximization (2)
	spectral modularity maximization (3)
	spectral modularity maximization (4)
	division into more than two groups
	weakness of repeated bipartitioning
	other modularity maximization methods
	other algorithms for community detection
	betweenness-based methods
	dendrogram
	comments on betweenness-based method
	hierarchical clustering
	similarity of vertices → similarity of groups
	procedure of hierarchical clustering
	similarity of two groups after join
	computational complexity of hierarchical clustering
	comments on hierarchical clustering

