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contents of this chapter 

• eigenvector centrality 

• finding the leading eigenvector of the 
adjacency matrix 

• spectral partitioning method 

• network community detection 



leading eigenvectors and eigenvector 
centrality 

• eigenvector centrality of vertex i 
– ith element of the leading eigenvector of the 

adjacency matrix 

• calculating the complete set of eigenvectors of 
the adjacency matrix is a wasteful approach 

• power method:  
– x(t) will converge to the leading eigenvector as 
– no faster method for calculating eigenvector 

centrality 
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caveats of power method 

• the method will not work if the initial vector x(0) 
happens to be orthogonal to the leading eigenvector 
– one simple way to avoid this problem is to choose the 

initial vector to have all elements positive 
• the elements of the vector have a tendency to grow on 

each iteration 
– we must periodically renormalize the vector by dividing all 

the elements by the same value 
• how long do we need to go on multiplying by the 

adjacency matrix before the result converges to the 
leading eigenvalue? 
– this will depend on how accurate an answer we require. 



computational complexity of power 
method 

1. how long each multiplication by the adjacency 
matrix takes? 

2. how many multiplications are needed? 
1. 
• adjacency matrix : n2 multiplication 

• adjacency list : O(m) 
–                      :set of neighbors of vertex i 
–          :ith element of 
–  all elements can be completed in time proportional to  
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how many multiplications must we 
perform? 

2.  

 

 

 

 

• if we want this error to be at most ε 
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computational complexity of power 
method 

• 1. each multiplication : O(m) 

• 2. number of multiplication : O(n) 
– sparse network (m    n) : O(mn)     O(n2) 

– dense network (m    n2): O(mn)     O(n3) 

• if adjacency matrix is used, multiplications 
take O(n2), so the total calculation takes O(n3) 

 

O(mn) time overall 
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calculating other eigenvalues and 
eigenvectors 

• power method calculates the largest eigenvalue 
of a matrix (and the corresponding eigenvector) 

• method for finding the smallest eivenvalue 
– shifting all the eigenvalues by a constant amount 

• eigenvalues of graph Laplacian L are non-negative 
 
–       is an eivenvector of 
– their order is reversed from those of the original 

Laplacian  
– smallest eigenvalue of         largest eigenvalue of  
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finding the second-largest eigenvalue 
(1) 

•   : normalized eigenvector corresponding to the 
largest eigenvalue of a matrix 

• define 

• this vector has the property that   

 

• y is equal to x along the direction of every 
eigenvector of A except the leading eigenvector 

•                 with            has no term in v1 since 
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finding the second-largest eigenvalue 
(2) 

• use vector y as the starting vector for repeated 
multiplication by A 

• after multiplying y by A t times 
 

• as         , 
• caveats 

– y might have a very small component in the direction 
of v1 

• periodically perform a subtraction 

• not work well beyond the first couple of 
eigenvectors  
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efficient algorithms for computing all 
eigenvalues and eigenvectors 

• finding orthogonal matrix Q such that the 
similarity transform                gives either 
– a tridiagomal matrix (if A is symmetric) or  
– a Hessenberg matrix (if A is asymmetric) 

• if we can find such Q, and if     is an eigenvector 
of     with eigenvalue  
 

• the vector              is an eigenvector of T with 
eigenvalue 

• eigenvectors of A are  

AQQT T=

iv
A iκ

i
T

i
T

i
T

i vTQAvQvQ ==κ
TQQ =−1

i
T

i vQw =
iκ

ii Qwv =

Q is an orthogonal matrix 

QL algorithm: efficient numerical method 
O(n) for a tridiagonal matrix 
O(n2) for a Heessenberg one 



algorithms for finding Q 

• for a symmetric matrix 
– Householder algorithm : O(n3) 

• for a sparse symmetric matrix 
– Lanczos algorithm : O(mn) 

• for an asymmetric matrix 
– Arnoldi algorithm 

 

• combined Lanczos/QL algorithm : O(mn) 



dividing networks into clusters 

• “graph partitioning”,  “community detection” 

• network of coauthorships in a university 
department 
– densely connected groups 

• discovering groups can 

be a useful tool for  

revealing structure and  

organization  



graph partitioning 

• the number and size of the groups is fixed 
– dividing a network into two groups of equal size, 

such that the number of edges between them is 
minimized 

– example: network processes on a parallel 
computer 

• message transmission between processors is slow 



community detection 

• the number and size of the group is 
unspecified 
– finding the natural divisions of a network into 

groups of vertices such that there are many edges 
within groups and few edges between groups 

• sizes of the groups might vary widely from one 
group to another 

• a wide variety of definitions 
• a wide variety of algorithms 



difference between graph partitioning 
and community detection 

• graph partitioning 
– the number and size of the groups is specified 

– dividing a network into smaller manageable pieces 

• community detection 
– the number and size of the groups is unspecified 

– used as a tool for understanding the structure of a 
network 



why partitioning is hard? (1) 

• graph bisection : division into two parts 
– repeated bisection : division into arbitrary number 

of parts 

• cut size : the number of edges between 
groups 

• exhaustive search is prohibitively costly 
– the number of ways of dividing a network of n 

vertices into two groups of n1 and n2 vertices 
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why partitioning is hard? (2) 

• if we want to divide a network into two parts 
of equal size      , the number of different ways 
to do it is roughly 
 

• Even algorithms that fail to find the very best 
division of a network may still find a pretty 
good one, and for many practical purposes 
pretty good is good enough. 
– heuristic algorithms 
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go up roughly exponentially 
with the size of the network calculation becomes intractable 

for the networks beyond n=30 



The Kernighan-Lin algorithm 
1. start with any division of the vertices into two groups 
2. search for pairs of vertices whose interchange would 

reduce the cut size between the groups by the largest 
amount (or increase it by the smallest amount) 

3. repeat the process (each vertex can only be moved 
once) 

4. when all swaps have been completed, go back 
through every state and choose the state in which the 
cut size takes its smallest value 

5. this entire procedure is performed repeatedly until no 
improvement in the cut size occurs 



comments on the Kernighan-Lin 
algorithm 

• if initial partitions are different, the results can be 
different 

• the Kernighan-Lin algorithm is slow 
– # of swaps : O(n) 
– for each swap, examine all pairs of vertices : O(n2) 
– check the changes after swap 

• the change of cut size 
 

• O(m/n) 

– total : O(n×n2×m/n)=O(mn2) 

n/2 (n/2)×(n/2)=n2/4 
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spectral partitioning (1) 

• a network of n vertices and m edges 

• a division into group 1 and group 2 

• cut size (the number of edges running 
between the two groups) 
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spectral partitioning (2) 

• the first term in the sum 

 

 

 

 

• goal: find the vector s that minimizes the cut 
size for given L  
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spectral partitioning (3) 

• minimizing R is not easy 
– si cannot take any values (+1 or -1) 

• approximate approach: allow si to take any 
values 
– constraint1 :              or 

– constraint2 :                    or 

ns = ns
i

i =∑ 2

if no constraint, 
s=0 is trivial solution 

the length of vector s 
should not be changed  

21 nns
i
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spectral partitioning (4) 

• differentiate with respect to the elements si 

– Lagrange multipliers 

 

 

 

• multiplying on the left by 1T 

( ) 02 21
2 =




















−−+








−+

∂
∂ ∑∑∑

j
j

i
j

jk
kjjk

i

snnsnssL
s

µλ

constraint1 constraint2 

µλ +=∑ i
j

jij ssL

1sLs µλ +=

λµ
n

nn 21 −−= 0=⋅1L 21 nnT −=s1

Laplacian matrix 
(L=D-A) is symmetric 

(L·1)T=1TLT=1TL=0 

1s1sx
n

nn 21 −−=+=
λ
µ

x1sLs1sLLx λµλ
λ
µ

=+==+= )(

define new vector x 

x is an eigenvector of the 
Laplacian with eigenvalue λ 



spectral partitioning (5) 

• which eigenvector should we choose? 
 

• x is orthogonal to 1 -> x ≠ 1 
 
 
 
 

• cut size is proportional to the eigenvalue λ 
– smallest eigenvalue is 0 that corresponds to eigenvalue 1 
– choose x proportional to the eigenvector v2 corresponding 

to the second smallest eigenvalue λ2  
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algorithm of spectral partitioning 

1. calculate the eigenvector v2 corresponding the second 
smallest eigenvalue λ2 of the graph Laplacian 

2. sort the elements of the eigenvector in order from 
largest to smallest 

3. put the vertices corresponding to the n1 largest 
elements in group 1, the rest in group 2, and calculate 
the cut size 

4. then put the vertices corresponding to the n1 smallest 
elements in group 1, the rest in group 2, and 
recalculate the cut size 

5. between these two divisions of the network, choose 
the one that gives the smaller cut size 



comments on spectral partitioning 

• disadvantages 
– quality of partition: not quite as good as those 

returned by other methods 

• advantages 
– speed : 

• calculation of the eigenvector v2 : O(mn)  

 (or O(n2) for sparse networks) 

 
Kernighan-Lin 

algorithm: O(n3) 



community detection 

• difference from graph partitioning : the 
number or size of the groups is not fixed 

• if no constraint, optimum division is trivial 
– group 1: all vertices 
– group 2: no vertex 

• loose constraint  
– minimize ratio 
– still biased towards equal partition 
– no principled rationale behind this definition 

cut size = 0 

21nn
R

denominator has its largest 
value when n1=n2=n/2 



quality measure other than cut size 

• a good division is one where there are fewer 
than expected such edges 

• modularity (as the measure of assortative 
mixing)  

• modularity maximization: look for the 
divisions that have the highest modularity 
scores 
– hard problem (takes exponential time) 
– heuristic algorithms are often used 

 



simple modularity maximization 

• analog of the Kernigham-Lin algorithm 
– starting from some initial (random) division 
– for each vertex check how much modularity would 

increase if it is moved to the other group 
– repeat the above process 

 
– identified communities  
are good 
– quite efficient : O(mn) 

 



spectral modularity maximization (1) 

• analogous to spectral graph partitioning 

 

 

 

• division of a network into two parts 
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spectral modularity maximization (2) 

• find the value of s that maximize Q 

 

• relax the constraints on s 
– elements of s can take arbitrary value 

– but its length has to be the same 
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spectral modularity maximization (3) 

 
• choose s =u1 (eigenvector corresponding the 

largest eigenvalue of the modularity matrix) 
• maximizing the product 

 
• <algorithm> 

1. calculate the eigenvector of the modularity matrix 
that corresponding to the largest eigenvalue 

2. assign vertices to communities according to the 
signs of the vector elements (positive/negative) 
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spectral modularity maximization (4) 

• unlike Laplacian, modularity matrix is not 
sparse 
– finding the leading eigenvector:O(mn) 

• O(n3) for dense matrix 

• O(n2) for sparse matrix 

– by exploiting special properties of the modularity 
matrix, it is still possible to find the eigenvector in 
time O(n2) on a sparse network 



division into more than two groups 
• repeating bipartitioning 

– even if each bipartition is optimal, repeated 
bipartitioning may not be optimal 

• consider the change ∆Q in the modularity of 
the entire network 
– bisecting a community c of size nc 
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weakness of repeated bipartitioning 

• repeated optimal bipartitioning may not be 
able to find optimal division 



other modularity maximization 
methods 

• simulated annealing 
– analogy with the physics of slow cooling of solids 
– ground state: the state of the lowest energy 
– pros: high quality  cons: slow 

• genetic algorithm 
– analogy with biological evolution 
– assign “fitness” to each of the population of different divisions 
– pros: high quality  cons: slow 

• greedy algorithm 
– bottom up : choose the merge of the biggest increase of 

modularity 
– pros: fast   cons: moderate quality 

 



other algorithms for community 
detection 

• there is no universally agreed definition of communities 
– the previous discussion focus on modularity maximization, but 

there are other definitions 
• some algorithms are introduced in the following slides 

– betweenness-based method 
– hierarchical clustering 

• if you want to learn more, read the following article  
– “Community detection in graphs” by Santo Fortunato 
– Physics Reports, Vol. 486, Issues 3-5, pp.75-174 February 2010  
– http://www.sciencedirect.com/science/article/pii/S0370157309

002841  

http://www.sciencedirect.com/science/article/pii/S0370157309002841�
http://www.sciencedirect.com/science/article/pii/S0370157309002841�


betweenness-based methods 

• look for the edges that lie between 
communities, and remove them 

• edge betweenness: the number of geodesic 
(shortest) paths that run along the edge 
– takes time of order O(n(m+n))  

• recalculation is required for each removal 

 



dendrogram 

• root(top): all vertices in one group 

• leaves(bottom): each vertex in a one-vertex 
group 

• the algorithm generates the dendrogram from 
top to bottom 

• selection from different divisions 
– coarse division (top) 

– fine division (bottom) 



comments on betweenness-based 
method 

• pros  
– hierarchical decomposition : dendrogram 

• cons 
– slow: entire algorithm takes time O(mn(m+n)) 

• Radicchi’s method  
– search for the edges that belong to short loops 

– faster : O(n2)  

O(n3) for sparse 
networks 

“bridge” edges do not 
belong to short loops 



hierarchical clustering 

• agglomerative (<-> divisive ) 

• define a measure of similarity, and join the 
most similar vertices to form groups 
– cosine similarity 

– correlation coefficient 

– Euclidean distance 



similarity of vertices → similarity of 
groups 

• there are n1n2 pairs of vertices 

• single-linkage clustering 
– similarity of the most similar pair 

• complete-linkage clustering 
– similarity of the least similar pair 

• average-linkage clustering 
– mean similarity of all pairs 

 

group 1 
n1 vertices 

group 2 
n2 vertices 



procedure of hierarchical clustering 

1. Choose a similarity measure and evaluate it for all 
vertex pairs. 

2. Assign each vertex to a group of its own, consisting of 
just that one vertex. The initial similarities of the 
groups are simply the similarities of the vertices. 

3. Find the pair of groups with the highest similarity and 
join them together into a single group. 

4. Calculate the similarity between the new composite 
group and all others using one of the three methods 
(single-, complete-, or average-linkage clustering). 

5. Repeat from step 3 until all vertices have been joined 
into a single group.  



similarity of two groups after join 

• single-linkage 
 

 
• complete-linkage 

 
 

• average-linkage 
 
 

•   

group1 

group2 

group1
&2 

group3 group3 
similarity=σ13 

similarity=σ23 

similarity=max(σ13,σ23) 

group1 

group2 

group1
&2 

group3 group3 
similarity=σ13 

similarity=σ23 

similarity=min(σ13,σ23) 

group1 

group2 

group1
&2 

group3 group3 
similarity= σ13  

similarity= σ23  

similarity=(n1σ13+n2σ23)/(n1+n2) 
n1 

n2 
n1+n2 



computational complexity of 
hierarchical clustering 

• O(n) for recalculation of similarities 
– O(n2) for naive approach (recalculation + search 

for the biggest one) 
– O(nlogn) for using a heap (recalculation + storing 

in a binary heap) 

• joining groups has to be repeated n-1 times 
• total 

– O(n3) for naive implementation 
– O(n2logn) for using a heap 



comments on hierarchical clustering 

• results depend on which similarity measure 
one chooses and which linkage method 

• good at picking out the cores of groups, but 
less good at assigning peripheral vertices to 
appropriate groups 
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